Polytope of Type {10,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,15}*1500e
if this polytope has a name.
Group : SmallGroup(1500,72)
Rank : 3
Schlafli Type : {10,15}
Number of vertices, edges, etc : 50, 375, 75
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {10,5}*500
   5-fold quotients : {10,15}*300
   15-fold quotients : {10,5}*100
   25-fold quotients : {2,15}*60
   75-fold quotients : {2,5}*20
   125-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)( 90, 92)
(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)(111,116)
(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)(132,150)
(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)
(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)(161,166)
(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)(182,200)
(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)(190,192)
(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)(211,216)
(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)(232,250)
(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)(240,242)
(252,255)(253,254)(256,271)(257,275)(258,274)(259,273)(260,272)(261,266)
(262,270)(263,269)(264,268)(265,267)(277,280)(278,279)(281,296)(282,300)
(283,299)(284,298)(285,297)(286,291)(287,295)(288,294)(289,293)(290,292)
(302,305)(303,304)(306,321)(307,325)(308,324)(309,323)(310,322)(311,316)
(312,320)(313,319)(314,318)(315,317)(327,330)(328,329)(331,346)(332,350)
(333,349)(334,348)(335,347)(336,341)(337,345)(338,344)(339,343)(340,342)
(352,355)(353,354)(356,371)(357,375)(358,374)(359,373)(360,372)(361,366)
(362,370)(363,369)(364,368)(365,367);;
s1 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 11, 21)( 12, 22)( 13, 23)
( 14, 24)( 15, 25)( 26,106)( 27,107)( 28,108)( 29,109)( 30,110)( 31,101)
( 32,102)( 33,103)( 34,104)( 35,105)( 36,121)( 37,122)( 38,123)( 39,124)
( 40,125)( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46,111)( 47,112)
( 48,113)( 49,114)( 50,115)( 51, 81)( 52, 82)( 53, 83)( 54, 84)( 55, 85)
( 56, 76)( 57, 77)( 58, 78)( 59, 79)( 60, 80)( 61, 96)( 62, 97)( 63, 98)
( 64, 99)( 65,100)( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 86)
( 72, 87)( 73, 88)( 74, 89)( 75, 90)(126,256)(127,257)(128,258)(129,259)
(130,260)(131,251)(132,252)(133,253)(134,254)(135,255)(136,271)(137,272)
(138,273)(139,274)(140,275)(141,266)(142,267)(143,268)(144,269)(145,270)
(146,261)(147,262)(148,263)(149,264)(150,265)(151,356)(152,357)(153,358)
(154,359)(155,360)(156,351)(157,352)(158,353)(159,354)(160,355)(161,371)
(162,372)(163,373)(164,374)(165,375)(166,366)(167,367)(168,368)(169,369)
(170,370)(171,361)(172,362)(173,363)(174,364)(175,365)(176,331)(177,332)
(178,333)(179,334)(180,335)(181,326)(182,327)(183,328)(184,329)(185,330)
(186,346)(187,347)(188,348)(189,349)(190,350)(191,341)(192,342)(193,343)
(194,344)(195,345)(196,336)(197,337)(198,338)(199,339)(200,340)(201,306)
(202,307)(203,308)(204,309)(205,310)(206,301)(207,302)(208,303)(209,304)
(210,305)(211,321)(212,322)(213,323)(214,324)(215,325)(216,316)(217,317)
(218,318)(219,319)(220,320)(221,311)(222,312)(223,313)(224,314)(225,315)
(226,281)(227,282)(228,283)(229,284)(230,285)(231,276)(232,277)(233,278)
(234,279)(235,280)(236,296)(237,297)(238,298)(239,299)(240,300)(241,291)
(242,292)(243,293)(244,294)(245,295)(246,286)(247,287)(248,288)(249,289)
(250,290);;
s2 := (  1,151)(  2,152)(  3,153)(  4,154)(  5,155)(  6,175)(  7,171)(  8,172)
(  9,173)( 10,174)( 11,169)( 12,170)( 13,166)( 14,167)( 15,168)( 16,163)
( 17,164)( 18,165)( 19,161)( 20,162)( 21,157)( 22,158)( 23,159)( 24,160)
( 25,156)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,150)( 32,146)
( 33,147)( 34,148)( 35,149)( 36,144)( 37,145)( 38,141)( 39,142)( 40,143)
( 41,138)( 42,139)( 43,140)( 44,136)( 45,137)( 46,132)( 47,133)( 48,134)
( 49,135)( 50,131)( 51,226)( 52,227)( 53,228)( 54,229)( 55,230)( 56,250)
( 57,246)( 58,247)( 59,248)( 60,249)( 61,244)( 62,245)( 63,241)( 64,242)
( 65,243)( 66,238)( 67,239)( 68,240)( 69,236)( 70,237)( 71,232)( 72,233)
( 73,234)( 74,235)( 75,231)( 76,201)( 77,202)( 78,203)( 79,204)( 80,205)
( 81,225)( 82,221)( 83,222)( 84,223)( 85,224)( 86,219)( 87,220)( 88,216)
( 89,217)( 90,218)( 91,213)( 92,214)( 93,215)( 94,211)( 95,212)( 96,207)
( 97,208)( 98,209)( 99,210)(100,206)(101,176)(102,177)(103,178)(104,179)
(105,180)(106,200)(107,196)(108,197)(109,198)(110,199)(111,194)(112,195)
(113,191)(114,192)(115,193)(116,188)(117,189)(118,190)(119,186)(120,187)
(121,182)(122,183)(123,184)(124,185)(125,181)(251,276)(252,277)(253,278)
(254,279)(255,280)(256,300)(257,296)(258,297)(259,298)(260,299)(261,294)
(262,295)(263,291)(264,292)(265,293)(266,288)(267,289)(268,290)(269,286)
(270,287)(271,282)(272,283)(273,284)(274,285)(275,281)(301,351)(302,352)
(303,353)(304,354)(305,355)(306,375)(307,371)(308,372)(309,373)(310,374)
(311,369)(312,370)(313,366)(314,367)(315,368)(316,363)(317,364)(318,365)
(319,361)(320,362)(321,357)(322,358)(323,359)(324,360)(325,356)(331,350)
(332,346)(333,347)(334,348)(335,349)(336,344)(337,345)(338,341)(339,342)
(340,343);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(375)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92)(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)
(111,116)(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)
(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)
(140,142)(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)
(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)
(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)
(190,192)(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)
(211,216)(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)
(232,250)(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)
(240,242)(252,255)(253,254)(256,271)(257,275)(258,274)(259,273)(260,272)
(261,266)(262,270)(263,269)(264,268)(265,267)(277,280)(278,279)(281,296)
(282,300)(283,299)(284,298)(285,297)(286,291)(287,295)(288,294)(289,293)
(290,292)(302,305)(303,304)(306,321)(307,325)(308,324)(309,323)(310,322)
(311,316)(312,320)(313,319)(314,318)(315,317)(327,330)(328,329)(331,346)
(332,350)(333,349)(334,348)(335,347)(336,341)(337,345)(338,344)(339,343)
(340,342)(352,355)(353,354)(356,371)(357,375)(358,374)(359,373)(360,372)
(361,366)(362,370)(363,369)(364,368)(365,367);
s1 := Sym(375)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 11, 21)( 12, 22)
( 13, 23)( 14, 24)( 15, 25)( 26,106)( 27,107)( 28,108)( 29,109)( 30,110)
( 31,101)( 32,102)( 33,103)( 34,104)( 35,105)( 36,121)( 37,122)( 38,123)
( 39,124)( 40,125)( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46,111)
( 47,112)( 48,113)( 49,114)( 50,115)( 51, 81)( 52, 82)( 53, 83)( 54, 84)
( 55, 85)( 56, 76)( 57, 77)( 58, 78)( 59, 79)( 60, 80)( 61, 96)( 62, 97)
( 63, 98)( 64, 99)( 65,100)( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)
( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(126,256)(127,257)(128,258)
(129,259)(130,260)(131,251)(132,252)(133,253)(134,254)(135,255)(136,271)
(137,272)(138,273)(139,274)(140,275)(141,266)(142,267)(143,268)(144,269)
(145,270)(146,261)(147,262)(148,263)(149,264)(150,265)(151,356)(152,357)
(153,358)(154,359)(155,360)(156,351)(157,352)(158,353)(159,354)(160,355)
(161,371)(162,372)(163,373)(164,374)(165,375)(166,366)(167,367)(168,368)
(169,369)(170,370)(171,361)(172,362)(173,363)(174,364)(175,365)(176,331)
(177,332)(178,333)(179,334)(180,335)(181,326)(182,327)(183,328)(184,329)
(185,330)(186,346)(187,347)(188,348)(189,349)(190,350)(191,341)(192,342)
(193,343)(194,344)(195,345)(196,336)(197,337)(198,338)(199,339)(200,340)
(201,306)(202,307)(203,308)(204,309)(205,310)(206,301)(207,302)(208,303)
(209,304)(210,305)(211,321)(212,322)(213,323)(214,324)(215,325)(216,316)
(217,317)(218,318)(219,319)(220,320)(221,311)(222,312)(223,313)(224,314)
(225,315)(226,281)(227,282)(228,283)(229,284)(230,285)(231,276)(232,277)
(233,278)(234,279)(235,280)(236,296)(237,297)(238,298)(239,299)(240,300)
(241,291)(242,292)(243,293)(244,294)(245,295)(246,286)(247,287)(248,288)
(249,289)(250,290);
s2 := Sym(375)!(  1,151)(  2,152)(  3,153)(  4,154)(  5,155)(  6,175)(  7,171)
(  8,172)(  9,173)( 10,174)( 11,169)( 12,170)( 13,166)( 14,167)( 15,168)
( 16,163)( 17,164)( 18,165)( 19,161)( 20,162)( 21,157)( 22,158)( 23,159)
( 24,160)( 25,156)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,150)
( 32,146)( 33,147)( 34,148)( 35,149)( 36,144)( 37,145)( 38,141)( 39,142)
( 40,143)( 41,138)( 42,139)( 43,140)( 44,136)( 45,137)( 46,132)( 47,133)
( 48,134)( 49,135)( 50,131)( 51,226)( 52,227)( 53,228)( 54,229)( 55,230)
( 56,250)( 57,246)( 58,247)( 59,248)( 60,249)( 61,244)( 62,245)( 63,241)
( 64,242)( 65,243)( 66,238)( 67,239)( 68,240)( 69,236)( 70,237)( 71,232)
( 72,233)( 73,234)( 74,235)( 75,231)( 76,201)( 77,202)( 78,203)( 79,204)
( 80,205)( 81,225)( 82,221)( 83,222)( 84,223)( 85,224)( 86,219)( 87,220)
( 88,216)( 89,217)( 90,218)( 91,213)( 92,214)( 93,215)( 94,211)( 95,212)
( 96,207)( 97,208)( 98,209)( 99,210)(100,206)(101,176)(102,177)(103,178)
(104,179)(105,180)(106,200)(107,196)(108,197)(109,198)(110,199)(111,194)
(112,195)(113,191)(114,192)(115,193)(116,188)(117,189)(118,190)(119,186)
(120,187)(121,182)(122,183)(123,184)(124,185)(125,181)(251,276)(252,277)
(253,278)(254,279)(255,280)(256,300)(257,296)(258,297)(259,298)(260,299)
(261,294)(262,295)(263,291)(264,292)(265,293)(266,288)(267,289)(268,290)
(269,286)(270,287)(271,282)(272,283)(273,284)(274,285)(275,281)(301,351)
(302,352)(303,353)(304,354)(305,355)(306,375)(307,371)(308,372)(309,373)
(310,374)(311,369)(312,370)(313,366)(314,367)(315,368)(316,363)(317,364)
(318,365)(319,361)(320,362)(321,357)(322,358)(323,359)(324,360)(325,356)
(331,350)(332,346)(333,347)(334,348)(335,349)(336,344)(337,345)(338,341)
(339,342)(340,343);
poly := sub<Sym(375)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope