include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,28}*1512
if this polytope has a name.
Group : SmallGroup(1512,482)
Rank : 3
Schlafli Type : {6,28}
Number of vertices, edges, etc : 27, 378, 126
Order of s0s1s2 : 84
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,28}*504
7-fold quotients : {6,4}*216
21-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)( 29, 50)
( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)( 37, 58)
( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 64,127)( 65,128)( 66,129)
( 67,130)( 68,131)( 69,132)( 70,133)( 71,134)( 72,135)( 73,136)( 74,137)
( 75,138)( 76,139)( 77,140)( 78,141)( 79,142)( 80,143)( 81,144)( 82,145)
( 83,146)( 84,147)( 85,169)( 86,170)( 87,171)( 88,172)( 89,173)( 90,174)
( 91,175)( 92,176)( 93,177)( 94,178)( 95,179)( 96,180)( 97,181)( 98,182)
( 99,183)(100,184)(101,185)(102,186)(103,187)(104,188)(105,189)(106,148)
(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)
(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,163)(122,164)
(123,165)(124,166)(125,167)(126,168);;
s1 := ( 1, 64)( 2, 66)( 3, 65)( 4, 82)( 5, 84)( 6, 83)( 7, 79)( 8, 81)
( 9, 80)( 10, 76)( 11, 78)( 12, 77)( 13, 73)( 14, 75)( 15, 74)( 16, 70)
( 17, 72)( 18, 71)( 19, 67)( 20, 69)( 21, 68)( 22, 86)( 23, 85)( 24, 87)
( 25,104)( 26,103)( 27,105)( 28,101)( 29,100)( 30,102)( 31, 98)( 32, 97)
( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37, 92)( 38, 91)( 39, 93)( 40, 89)
( 41, 88)( 42, 90)( 43,108)( 44,107)( 45,106)( 46,126)( 47,125)( 48,124)
( 49,123)( 50,122)( 51,121)( 52,120)( 53,119)( 54,118)( 55,117)( 56,116)
( 57,115)( 58,114)( 59,113)( 60,112)( 61,111)( 62,110)( 63,109)(128,129)
(130,145)(131,147)(132,146)(133,142)(134,144)(135,143)(136,139)(137,141)
(138,140)(148,149)(151,167)(152,166)(153,168)(154,164)(155,163)(156,165)
(157,161)(158,160)(159,162)(169,171)(172,189)(173,188)(174,187)(175,186)
(176,185)(177,184)(178,183)(179,182)(180,181);;
s2 := ( 1, 5)( 2, 4)( 3, 6)( 7, 20)( 8, 19)( 9, 21)( 10, 17)( 11, 16)
( 12, 18)( 13, 14)( 22, 68)( 23, 67)( 24, 69)( 25, 65)( 26, 64)( 27, 66)
( 28, 83)( 29, 82)( 30, 84)( 31, 80)( 32, 79)( 33, 81)( 34, 77)( 35, 76)
( 36, 78)( 37, 74)( 38, 73)( 39, 75)( 40, 71)( 41, 70)( 42, 72)( 43,131)
( 44,130)( 45,132)( 46,128)( 47,127)( 48,129)( 49,146)( 50,145)( 51,147)
( 52,143)( 53,142)( 54,144)( 55,140)( 56,139)( 57,141)( 58,137)( 59,136)
( 60,138)( 61,134)( 62,133)( 63,135)( 85, 90)( 86, 89)( 87, 88)( 91,105)
( 92,104)( 93,103)( 94,102)( 95,101)( 96,100)( 97, 99)(106,151)(107,153)
(108,152)(109,148)(110,150)(111,149)(112,166)(113,168)(114,167)(115,163)
(116,165)(117,164)(118,160)(119,162)(120,161)(121,157)(122,159)(123,158)
(124,154)(125,156)(126,155)(169,174)(170,173)(171,172)(175,189)(176,188)
(177,187)(178,186)(179,185)(180,184)(181,183);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(189)!( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)
( 29, 50)( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)
( 37, 58)( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 64,127)( 65,128)
( 66,129)( 67,130)( 68,131)( 69,132)( 70,133)( 71,134)( 72,135)( 73,136)
( 74,137)( 75,138)( 76,139)( 77,140)( 78,141)( 79,142)( 80,143)( 81,144)
( 82,145)( 83,146)( 84,147)( 85,169)( 86,170)( 87,171)( 88,172)( 89,173)
( 90,174)( 91,175)( 92,176)( 93,177)( 94,178)( 95,179)( 96,180)( 97,181)
( 98,182)( 99,183)(100,184)(101,185)(102,186)(103,187)(104,188)(105,189)
(106,148)(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)
(114,156)(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,163)
(122,164)(123,165)(124,166)(125,167)(126,168);
s1 := Sym(189)!( 1, 64)( 2, 66)( 3, 65)( 4, 82)( 5, 84)( 6, 83)( 7, 79)
( 8, 81)( 9, 80)( 10, 76)( 11, 78)( 12, 77)( 13, 73)( 14, 75)( 15, 74)
( 16, 70)( 17, 72)( 18, 71)( 19, 67)( 20, 69)( 21, 68)( 22, 86)( 23, 85)
( 24, 87)( 25,104)( 26,103)( 27,105)( 28,101)( 29,100)( 30,102)( 31, 98)
( 32, 97)( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37, 92)( 38, 91)( 39, 93)
( 40, 89)( 41, 88)( 42, 90)( 43,108)( 44,107)( 45,106)( 46,126)( 47,125)
( 48,124)( 49,123)( 50,122)( 51,121)( 52,120)( 53,119)( 54,118)( 55,117)
( 56,116)( 57,115)( 58,114)( 59,113)( 60,112)( 61,111)( 62,110)( 63,109)
(128,129)(130,145)(131,147)(132,146)(133,142)(134,144)(135,143)(136,139)
(137,141)(138,140)(148,149)(151,167)(152,166)(153,168)(154,164)(155,163)
(156,165)(157,161)(158,160)(159,162)(169,171)(172,189)(173,188)(174,187)
(175,186)(176,185)(177,184)(178,183)(179,182)(180,181);
s2 := Sym(189)!( 1, 5)( 2, 4)( 3, 6)( 7, 20)( 8, 19)( 9, 21)( 10, 17)
( 11, 16)( 12, 18)( 13, 14)( 22, 68)( 23, 67)( 24, 69)( 25, 65)( 26, 64)
( 27, 66)( 28, 83)( 29, 82)( 30, 84)( 31, 80)( 32, 79)( 33, 81)( 34, 77)
( 35, 76)( 36, 78)( 37, 74)( 38, 73)( 39, 75)( 40, 71)( 41, 70)( 42, 72)
( 43,131)( 44,130)( 45,132)( 46,128)( 47,127)( 48,129)( 49,146)( 50,145)
( 51,147)( 52,143)( 53,142)( 54,144)( 55,140)( 56,139)( 57,141)( 58,137)
( 59,136)( 60,138)( 61,134)( 62,133)( 63,135)( 85, 90)( 86, 89)( 87, 88)
( 91,105)( 92,104)( 93,103)( 94,102)( 95,101)( 96,100)( 97, 99)(106,151)
(107,153)(108,152)(109,148)(110,150)(111,149)(112,166)(113,168)(114,167)
(115,163)(116,165)(117,164)(118,160)(119,162)(120,161)(121,157)(122,159)
(123,158)(124,154)(125,156)(126,155)(169,174)(170,173)(171,172)(175,189)
(176,188)(177,187)(178,186)(179,185)(180,184)(181,183);
poly := sub<Sym(189)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1 >;
References : None.
to this polytope