Polytope of Type {28}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28}*56
Also Known As : 28-gon, {28}. if this polytope has another name.
Group : SmallGroup(56,5)
Rank : 2
Schlafli Type : {28}
Number of vertices, edges, etc : 28, 28
Order of s0s1 : 28
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {28,2} of size 112
   {28,4} of size 224
   {28,6} of size 336
   {28,6} of size 336
   {28,4} of size 448
   {28,8} of size 448
   {28,8} of size 448
   {28,6} of size 504
   {28,10} of size 560
   {28,12} of size 672
   {28,6} of size 672
   {28,14} of size 784
   {28,14} of size 784
   {28,14} of size 784
   {28,8} of size 896
   {28,4} of size 896
   {28,8} of size 896
   {28,16} of size 896
   {28,16} of size 896
   {28,18} of size 1008
   {28,18} of size 1008
   {28,4} of size 1008
   {28,6} of size 1008
   {28,20} of size 1120
   {28,22} of size 1232
   {28,12} of size 1344
   {28,24} of size 1344
   {28,24} of size 1344
   {28,4} of size 1344
   {28,4} of size 1344
   {28,6} of size 1344
   {28,6} of size 1344
   {28,8} of size 1344
   {28,8} of size 1344
   {28,8} of size 1344
   {28,8} of size 1344
   {28,3} of size 1344
   {28,6} of size 1344
   {28,6} of size 1344
   {28,7} of size 1344
   {28,12} of size 1344
   {28,6} of size 1344
   {28,12} of size 1344
   {28,10} of size 1400
   {28,26} of size 1456
   {28,6} of size 1512
   {28,28} of size 1568
   {28,28} of size 1568
   {28,28} of size 1568
   {28,4} of size 1568
   {28,30} of size 1680
   {28,6} of size 1680
   {28,10} of size 1680
   {28,30} of size 1680
   {28,8} of size 1792
   {28,16} of size 1792
   {28,16} of size 1792
   {28,32} of size 1792
   {28,32} of size 1792
   {28,4} of size 1792
   {28,8} of size 1792
   {28,8} of size 1792
   {28,8} of size 1792
   {28,34} of size 1904
Vertex Figure Of :
   {2,28} of size 112
   {4,28} of size 224
   {6,28} of size 336
   {6,28} of size 336
   {4,28} of size 448
   {8,28} of size 448
   {8,28} of size 448
   {6,28} of size 504
   {10,28} of size 560
   {12,28} of size 672
   {6,28} of size 672
   {14,28} of size 784
   {14,28} of size 784
   {14,28} of size 784
   {8,28} of size 896
   {4,28} of size 896
   {8,28} of size 896
   {16,28} of size 896
   {16,28} of size 896
   {18,28} of size 1008
   {18,28} of size 1008
   {4,28} of size 1008
   {6,28} of size 1008
   {20,28} of size 1120
   {22,28} of size 1232
   {12,28} of size 1344
   {24,28} of size 1344
   {24,28} of size 1344
   {4,28} of size 1344
   {4,28} of size 1344
   {6,28} of size 1344
   {6,28} of size 1344
   {8,28} of size 1344
   {8,28} of size 1344
   {8,28} of size 1344
   {8,28} of size 1344
   {3,28} of size 1344
   {6,28} of size 1344
   {6,28} of size 1344
   {7,28} of size 1344
   {12,28} of size 1344
   {6,28} of size 1344
   {12,28} of size 1344
   {10,28} of size 1400
   {26,28} of size 1456
   {6,28} of size 1512
   {28,28} of size 1568
   {28,28} of size 1568
   {28,28} of size 1568
   {4,28} of size 1568
   {30,28} of size 1680
   {6,28} of size 1680
   {10,28} of size 1680
   {30,28} of size 1680
   {8,28} of size 1792
   {16,28} of size 1792
   {16,28} of size 1792
   {32,28} of size 1792
   {32,28} of size 1792
   {4,28} of size 1792
   {8,28} of size 1792
   {8,28} of size 1792
   {8,28} of size 1792
   {34,28} of size 1904
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {14}*28
   4-fold quotients : {7}*14
   7-fold quotients : {4}*8
   14-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {56}*112
   3-fold covers : {84}*168
   4-fold covers : {112}*224
   5-fold covers : {140}*280
   6-fold covers : {168}*336
   7-fold covers : {196}*392
   8-fold covers : {224}*448
   9-fold covers : {252}*504
   10-fold covers : {280}*560
   11-fold covers : {308}*616
   12-fold covers : {336}*672
   13-fold covers : {364}*728
   14-fold covers : {392}*784
   15-fold covers : {420}*840
   16-fold covers : {448}*896
   17-fold covers : {476}*952
   18-fold covers : {504}*1008
   19-fold covers : {532}*1064
   20-fold covers : {560}*1120
   21-fold covers : {588}*1176
   22-fold covers : {616}*1232
   23-fold covers : {644}*1288
   24-fold covers : {672}*1344
   25-fold covers : {700}*1400
   26-fold covers : {728}*1456
   27-fold covers : {756}*1512
   28-fold covers : {784}*1568
   29-fold covers : {812}*1624
   30-fold covers : {840}*1680
   31-fold covers : {868}*1736
   32-fold covers : {896}*1792
   33-fold covers : {924}*1848
   34-fold covers : {952}*1904
   35-fold covers : {980}*1960
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)(21,22)
(23,26)(24,25)(27,28);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)(16,19)
(18,27)(20,24)(22,25)(26,28);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(28)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)
(21,22)(23,26)(24,25)(27,28);
s1 := Sym(28)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)
(16,19)(18,27)(20,24)(22,25)(26,28);
poly := sub<Sym(28)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope