include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,388}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,388}*1552
if this polytope has a name.
Group : SmallGroup(1552,36)
Rank : 3
Schlafli Type : {2,388}
Number of vertices, edges, etc : 2, 388, 388
Order of s0s1s2 : 388
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,194}*776
4-fold quotients : {2,97}*388
97-fold quotients : {2,4}*16
194-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 99)( 5, 98)( 6, 97)( 7, 96)( 8, 95)( 9, 94)( 10, 93)( 11, 92)
( 12, 91)( 13, 90)( 14, 89)( 15, 88)( 16, 87)( 17, 86)( 18, 85)( 19, 84)
( 20, 83)( 21, 82)( 22, 81)( 23, 80)( 24, 79)( 25, 78)( 26, 77)( 27, 76)
( 28, 75)( 29, 74)( 30, 73)( 31, 72)( 32, 71)( 33, 70)( 34, 69)( 35, 68)
( 36, 67)( 37, 66)( 38, 65)( 39, 64)( 40, 63)( 41, 62)( 42, 61)( 43, 60)
( 44, 59)( 45, 58)( 46, 57)( 47, 56)( 48, 55)( 49, 54)( 50, 53)( 51, 52)
(101,196)(102,195)(103,194)(104,193)(105,192)(106,191)(107,190)(108,189)
(109,188)(110,187)(111,186)(112,185)(113,184)(114,183)(115,182)(116,181)
(117,180)(118,179)(119,178)(120,177)(121,176)(122,175)(123,174)(124,173)
(125,172)(126,171)(127,170)(128,169)(129,168)(130,167)(131,166)(132,165)
(133,164)(134,163)(135,162)(136,161)(137,160)(138,159)(139,158)(140,157)
(141,156)(142,155)(143,154)(144,153)(145,152)(146,151)(147,150)(148,149)
(197,294)(198,390)(199,389)(200,388)(201,387)(202,386)(203,385)(204,384)
(205,383)(206,382)(207,381)(208,380)(209,379)(210,378)(211,377)(212,376)
(213,375)(214,374)(215,373)(216,372)(217,371)(218,370)(219,369)(220,368)
(221,367)(222,366)(223,365)(224,364)(225,363)(226,362)(227,361)(228,360)
(229,359)(230,358)(231,357)(232,356)(233,355)(234,354)(235,353)(236,352)
(237,351)(238,350)(239,349)(240,348)(241,347)(242,346)(243,345)(244,344)
(245,343)(246,342)(247,341)(248,340)(249,339)(250,338)(251,337)(252,336)
(253,335)(254,334)(255,333)(256,332)(257,331)(258,330)(259,329)(260,328)
(261,327)(262,326)(263,325)(264,324)(265,323)(266,322)(267,321)(268,320)
(269,319)(270,318)(271,317)(272,316)(273,315)(274,314)(275,313)(276,312)
(277,311)(278,310)(279,309)(280,308)(281,307)(282,306)(283,305)(284,304)
(285,303)(286,302)(287,301)(288,300)(289,299)(290,298)(291,297)(292,296)
(293,295);;
s2 := ( 3,198)( 4,197)( 5,293)( 6,292)( 7,291)( 8,290)( 9,289)( 10,288)
( 11,287)( 12,286)( 13,285)( 14,284)( 15,283)( 16,282)( 17,281)( 18,280)
( 19,279)( 20,278)( 21,277)( 22,276)( 23,275)( 24,274)( 25,273)( 26,272)
( 27,271)( 28,270)( 29,269)( 30,268)( 31,267)( 32,266)( 33,265)( 34,264)
( 35,263)( 36,262)( 37,261)( 38,260)( 39,259)( 40,258)( 41,257)( 42,256)
( 43,255)( 44,254)( 45,253)( 46,252)( 47,251)( 48,250)( 49,249)( 50,248)
( 51,247)( 52,246)( 53,245)( 54,244)( 55,243)( 56,242)( 57,241)( 58,240)
( 59,239)( 60,238)( 61,237)( 62,236)( 63,235)( 64,234)( 65,233)( 66,232)
( 67,231)( 68,230)( 69,229)( 70,228)( 71,227)( 72,226)( 73,225)( 74,224)
( 75,223)( 76,222)( 77,221)( 78,220)( 79,219)( 80,218)( 81,217)( 82,216)
( 83,215)( 84,214)( 85,213)( 86,212)( 87,211)( 88,210)( 89,209)( 90,208)
( 91,207)( 92,206)( 93,205)( 94,204)( 95,203)( 96,202)( 97,201)( 98,200)
( 99,199)(100,295)(101,294)(102,390)(103,389)(104,388)(105,387)(106,386)
(107,385)(108,384)(109,383)(110,382)(111,381)(112,380)(113,379)(114,378)
(115,377)(116,376)(117,375)(118,374)(119,373)(120,372)(121,371)(122,370)
(123,369)(124,368)(125,367)(126,366)(127,365)(128,364)(129,363)(130,362)
(131,361)(132,360)(133,359)(134,358)(135,357)(136,356)(137,355)(138,354)
(139,353)(140,352)(141,351)(142,350)(143,349)(144,348)(145,347)(146,346)
(147,345)(148,344)(149,343)(150,342)(151,341)(152,340)(153,339)(154,338)
(155,337)(156,336)(157,335)(158,334)(159,333)(160,332)(161,331)(162,330)
(163,329)(164,328)(165,327)(166,326)(167,325)(168,324)(169,323)(170,322)
(171,321)(172,320)(173,319)(174,318)(175,317)(176,316)(177,315)(178,314)
(179,313)(180,312)(181,311)(182,310)(183,309)(184,308)(185,307)(186,306)
(187,305)(188,304)(189,303)(190,302)(191,301)(192,300)(193,299)(194,298)
(195,297)(196,296);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(390)!(1,2);
s1 := Sym(390)!( 4, 99)( 5, 98)( 6, 97)( 7, 96)( 8, 95)( 9, 94)( 10, 93)
( 11, 92)( 12, 91)( 13, 90)( 14, 89)( 15, 88)( 16, 87)( 17, 86)( 18, 85)
( 19, 84)( 20, 83)( 21, 82)( 22, 81)( 23, 80)( 24, 79)( 25, 78)( 26, 77)
( 27, 76)( 28, 75)( 29, 74)( 30, 73)( 31, 72)( 32, 71)( 33, 70)( 34, 69)
( 35, 68)( 36, 67)( 37, 66)( 38, 65)( 39, 64)( 40, 63)( 41, 62)( 42, 61)
( 43, 60)( 44, 59)( 45, 58)( 46, 57)( 47, 56)( 48, 55)( 49, 54)( 50, 53)
( 51, 52)(101,196)(102,195)(103,194)(104,193)(105,192)(106,191)(107,190)
(108,189)(109,188)(110,187)(111,186)(112,185)(113,184)(114,183)(115,182)
(116,181)(117,180)(118,179)(119,178)(120,177)(121,176)(122,175)(123,174)
(124,173)(125,172)(126,171)(127,170)(128,169)(129,168)(130,167)(131,166)
(132,165)(133,164)(134,163)(135,162)(136,161)(137,160)(138,159)(139,158)
(140,157)(141,156)(142,155)(143,154)(144,153)(145,152)(146,151)(147,150)
(148,149)(197,294)(198,390)(199,389)(200,388)(201,387)(202,386)(203,385)
(204,384)(205,383)(206,382)(207,381)(208,380)(209,379)(210,378)(211,377)
(212,376)(213,375)(214,374)(215,373)(216,372)(217,371)(218,370)(219,369)
(220,368)(221,367)(222,366)(223,365)(224,364)(225,363)(226,362)(227,361)
(228,360)(229,359)(230,358)(231,357)(232,356)(233,355)(234,354)(235,353)
(236,352)(237,351)(238,350)(239,349)(240,348)(241,347)(242,346)(243,345)
(244,344)(245,343)(246,342)(247,341)(248,340)(249,339)(250,338)(251,337)
(252,336)(253,335)(254,334)(255,333)(256,332)(257,331)(258,330)(259,329)
(260,328)(261,327)(262,326)(263,325)(264,324)(265,323)(266,322)(267,321)
(268,320)(269,319)(270,318)(271,317)(272,316)(273,315)(274,314)(275,313)
(276,312)(277,311)(278,310)(279,309)(280,308)(281,307)(282,306)(283,305)
(284,304)(285,303)(286,302)(287,301)(288,300)(289,299)(290,298)(291,297)
(292,296)(293,295);
s2 := Sym(390)!( 3,198)( 4,197)( 5,293)( 6,292)( 7,291)( 8,290)( 9,289)
( 10,288)( 11,287)( 12,286)( 13,285)( 14,284)( 15,283)( 16,282)( 17,281)
( 18,280)( 19,279)( 20,278)( 21,277)( 22,276)( 23,275)( 24,274)( 25,273)
( 26,272)( 27,271)( 28,270)( 29,269)( 30,268)( 31,267)( 32,266)( 33,265)
( 34,264)( 35,263)( 36,262)( 37,261)( 38,260)( 39,259)( 40,258)( 41,257)
( 42,256)( 43,255)( 44,254)( 45,253)( 46,252)( 47,251)( 48,250)( 49,249)
( 50,248)( 51,247)( 52,246)( 53,245)( 54,244)( 55,243)( 56,242)( 57,241)
( 58,240)( 59,239)( 60,238)( 61,237)( 62,236)( 63,235)( 64,234)( 65,233)
( 66,232)( 67,231)( 68,230)( 69,229)( 70,228)( 71,227)( 72,226)( 73,225)
( 74,224)( 75,223)( 76,222)( 77,221)( 78,220)( 79,219)( 80,218)( 81,217)
( 82,216)( 83,215)( 84,214)( 85,213)( 86,212)( 87,211)( 88,210)( 89,209)
( 90,208)( 91,207)( 92,206)( 93,205)( 94,204)( 95,203)( 96,202)( 97,201)
( 98,200)( 99,199)(100,295)(101,294)(102,390)(103,389)(104,388)(105,387)
(106,386)(107,385)(108,384)(109,383)(110,382)(111,381)(112,380)(113,379)
(114,378)(115,377)(116,376)(117,375)(118,374)(119,373)(120,372)(121,371)
(122,370)(123,369)(124,368)(125,367)(126,366)(127,365)(128,364)(129,363)
(130,362)(131,361)(132,360)(133,359)(134,358)(135,357)(136,356)(137,355)
(138,354)(139,353)(140,352)(141,351)(142,350)(143,349)(144,348)(145,347)
(146,346)(147,345)(148,344)(149,343)(150,342)(151,341)(152,340)(153,339)
(154,338)(155,337)(156,336)(157,335)(158,334)(159,333)(160,332)(161,331)
(162,330)(163,329)(164,328)(165,327)(166,326)(167,325)(168,324)(169,323)
(170,322)(171,321)(172,320)(173,319)(174,318)(175,317)(176,316)(177,315)
(178,314)(179,313)(180,312)(181,311)(182,310)(183,309)(184,308)(185,307)
(186,306)(187,305)(188,304)(189,303)(190,302)(191,301)(192,300)(193,299)
(194,298)(195,297)(196,296);
poly := sub<Sym(390)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope