Polytope of Type {8,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,14}*1568c
if this polytope has a name.
Group : SmallGroup(1568,917)
Rank : 3
Schlafli Type : {8,14}
Number of vertices, edges, etc : 56, 392, 98
Order of s0s1s2 : 8
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,14}*784b
   49-fold quotients : {8,2}*32
   98-fold quotients : {4,2}*16
   196-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,48)( 9,49)(10,43)(11,44)(12,45)(13,46)(14,47)(15,39)(16,40)(17,41)
(18,42)(19,36)(20,37)(21,38)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(28,29)
(57,97)(58,98)(59,92)(60,93)(61,94)(62,95)(63,96)(64,88)(65,89)(66,90)(67,91)
(68,85)(69,86)(70,87)(71,79)(72,80)(73,81)(74,82)(75,83)(76,84)(77,78);;
s1 := ( 2,39)( 3,28)( 4,10)( 5,48)( 6,30)( 7,19)( 8,33)( 9,15)(11,42)(12,24)
(14,44)(16,47)(17,29)(20,38)(21,27)(22,41)(25,43)(26,32)(31,37)(34,46)(36,49)
(51,88)(52,77)(53,59)(54,97)(55,79)(56,68)(57,82)(58,64)(60,91)(61,73)(63,93)
(65,96)(66,78)(69,87)(70,76)(71,90)(74,92)(75,81)(80,86)(83,95)(85,98);;
s2 := ( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,93)( 9,92)(10,98)
(11,97)(12,96)(13,95)(14,94)(15,86)(16,85)(17,91)(18,90)(19,89)(20,88)(21,87)
(22,79)(23,78)(24,84)(25,83)(26,82)(27,81)(28,80)(29,72)(30,71)(31,77)(32,76)
(33,75)(34,74)(35,73)(36,65)(37,64)(38,70)(39,69)(40,68)(41,67)(42,66)(43,58)
(44,57)(45,63)(46,62)(47,61)(48,60)(49,59);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!( 8,48)( 9,49)(10,43)(11,44)(12,45)(13,46)(14,47)(15,39)(16,40)
(17,41)(18,42)(19,36)(20,37)(21,38)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)
(28,29)(57,97)(58,98)(59,92)(60,93)(61,94)(62,95)(63,96)(64,88)(65,89)(66,90)
(67,91)(68,85)(69,86)(70,87)(71,79)(72,80)(73,81)(74,82)(75,83)(76,84)(77,78);
s1 := Sym(98)!( 2,39)( 3,28)( 4,10)( 5,48)( 6,30)( 7,19)( 8,33)( 9,15)(11,42)
(12,24)(14,44)(16,47)(17,29)(20,38)(21,27)(22,41)(25,43)(26,32)(31,37)(34,46)
(36,49)(51,88)(52,77)(53,59)(54,97)(55,79)(56,68)(57,82)(58,64)(60,91)(61,73)
(63,93)(65,96)(66,78)(69,87)(70,76)(71,90)(74,92)(75,81)(80,86)(83,95)(85,98);
s2 := Sym(98)!( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,93)( 9,92)
(10,98)(11,97)(12,96)(13,95)(14,94)(15,86)(16,85)(17,91)(18,90)(19,89)(20,88)
(21,87)(22,79)(23,78)(24,84)(25,83)(26,82)(27,81)(28,80)(29,72)(30,71)(31,77)
(32,76)(33,75)(34,74)(35,73)(36,65)(37,64)(38,70)(39,69)(40,68)(41,67)(42,66)
(43,58)(44,57)(45,63)(46,62)(47,61)(48,60)(49,59);
poly := sub<Sym(98)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope