Polytope of Type {14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14}*28
Also Known As : 14-gon, {14}. if this polytope has another name.
Group : SmallGroup(28,3)
Rank : 2
Schlafli Type : {14}
Number of vertices, edges, etc : 14, 14
Order of s0s1 : 14
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {14,2} of size 56
   {14,4} of size 112
   {14,6} of size 168
   {14,7} of size 196
   {14,8} of size 224
   {14,10} of size 280
   {14,12} of size 336
   {14,4} of size 392
   {14,14} of size 392
   {14,14} of size 392
   {14,14} of size 392
   {14,16} of size 448
   {14,18} of size 504
   {14,20} of size 560
   {14,3} of size 588
   {14,6} of size 588
   {14,21} of size 588
   {14,22} of size 616
   {14,24} of size 672
   {14,3} of size 672
   {14,4} of size 672
   {14,4} of size 672
   {14,6} of size 672
   {14,6} of size 672
   {14,7} of size 672
   {14,8} of size 672
   {14,8} of size 672
   {14,8} of size 672
   {14,8} of size 672
   {14,26} of size 728
   {14,28} of size 784
   {14,28} of size 784
   {14,28} of size 784
   {14,8} of size 784
   {14,8} of size 784
   {14,4} of size 784
   {14,30} of size 840
   {14,32} of size 896
   {14,34} of size 952
   {14,35} of size 980
   {14,36} of size 1008
   {14,3} of size 1008
   {14,3} of size 1008
   {14,7} of size 1008
   {14,7} of size 1008
   {14,7} of size 1008
   {14,7} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,38} of size 1064
   {14,40} of size 1120
   {14,6} of size 1176
   {14,6} of size 1176
   {14,12} of size 1176
   {14,42} of size 1176
   {14,42} of size 1176
   {14,42} of size 1176
   {14,44} of size 1232
   {14,46} of size 1288
   {14,48} of size 1344
   {14,6} of size 1344
   {14,4} of size 1344
   {14,6} of size 1344
   {14,6} of size 1344
   {14,8} of size 1344
   {14,8} of size 1344
   {14,14} of size 1344
   {14,49} of size 1372
   {14,7} of size 1372
   {14,14} of size 1372
   {14,50} of size 1400
   {14,52} of size 1456
   {14,54} of size 1512
   {14,56} of size 1568
   {14,56} of size 1568
   {14,56} of size 1568
   {14,8} of size 1568
   {14,8} of size 1568
   {14,8} of size 1568
   {14,58} of size 1624
   {14,60} of size 1680
   {14,62} of size 1736
   {14,9} of size 1764
   {14,18} of size 1764
   {14,63} of size 1764
   {14,64} of size 1792
   {14,4} of size 1792
   {14,4} of size 1792
   {14,7} of size 1792
   {14,7} of size 1792
   {14,7} of size 1792
   {14,4} of size 1792
   {14,4} of size 1792
   {14,7} of size 1792
   {14,66} of size 1848
   {14,68} of size 1904
   {14,20} of size 1960
   {14,70} of size 1960
   {14,70} of size 1960
   {14,70} of size 1960
Vertex Figure Of :
   {2,14} of size 56
   {4,14} of size 112
   {6,14} of size 168
   {7,14} of size 196
   {8,14} of size 224
   {10,14} of size 280
   {12,14} of size 336
   {4,14} of size 392
   {14,14} of size 392
   {14,14} of size 392
   {14,14} of size 392
   {16,14} of size 448
   {18,14} of size 504
   {20,14} of size 560
   {3,14} of size 588
   {6,14} of size 588
   {21,14} of size 588
   {22,14} of size 616
   {24,14} of size 672
   {3,14} of size 672
   {4,14} of size 672
   {4,14} of size 672
   {6,14} of size 672
   {6,14} of size 672
   {7,14} of size 672
   {8,14} of size 672
   {8,14} of size 672
   {8,14} of size 672
   {8,14} of size 672
   {26,14} of size 728
   {28,14} of size 784
   {28,14} of size 784
   {28,14} of size 784
   {8,14} of size 784
   {8,14} of size 784
   {4,14} of size 784
   {30,14} of size 840
   {32,14} of size 896
   {34,14} of size 952
   {35,14} of size 980
   {36,14} of size 1008
   {3,14} of size 1008
   {3,14} of size 1008
   {7,14} of size 1008
   {7,14} of size 1008
   {7,14} of size 1008
   {7,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {38,14} of size 1064
   {40,14} of size 1120
   {6,14} of size 1176
   {6,14} of size 1176
   {12,14} of size 1176
   {42,14} of size 1176
   {42,14} of size 1176
   {42,14} of size 1176
   {44,14} of size 1232
   {46,14} of size 1288
   {48,14} of size 1344
   {6,14} of size 1344
   {4,14} of size 1344
   {6,14} of size 1344
   {6,14} of size 1344
   {8,14} of size 1344
   {8,14} of size 1344
   {14,14} of size 1344
   {49,14} of size 1372
   {7,14} of size 1372
   {14,14} of size 1372
   {50,14} of size 1400
   {52,14} of size 1456
   {54,14} of size 1512
   {56,14} of size 1568
   {56,14} of size 1568
   {56,14} of size 1568
   {8,14} of size 1568
   {8,14} of size 1568
   {8,14} of size 1568
   {58,14} of size 1624
   {60,14} of size 1680
   {62,14} of size 1736
   {9,14} of size 1764
   {18,14} of size 1764
   {63,14} of size 1764
   {64,14} of size 1792
   {4,14} of size 1792
   {4,14} of size 1792
   {7,14} of size 1792
   {7,14} of size 1792
   {7,14} of size 1792
   {4,14} of size 1792
   {4,14} of size 1792
   {7,14} of size 1792
   {66,14} of size 1848
   {68,14} of size 1904
   {20,14} of size 1960
   {70,14} of size 1960
   {70,14} of size 1960
   {70,14} of size 1960
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7}*14
   7-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {28}*56
   3-fold covers : {42}*84
   4-fold covers : {56}*112
   5-fold covers : {70}*140
   6-fold covers : {84}*168
   7-fold covers : {98}*196
   8-fold covers : {112}*224
   9-fold covers : {126}*252
   10-fold covers : {140}*280
   11-fold covers : {154}*308
   12-fold covers : {168}*336
   13-fold covers : {182}*364
   14-fold covers : {196}*392
   15-fold covers : {210}*420
   16-fold covers : {224}*448
   17-fold covers : {238}*476
   18-fold covers : {252}*504
   19-fold covers : {266}*532
   20-fold covers : {280}*560
   21-fold covers : {294}*588
   22-fold covers : {308}*616
   23-fold covers : {322}*644
   24-fold covers : {336}*672
   25-fold covers : {350}*700
   26-fold covers : {364}*728
   27-fold covers : {378}*756
   28-fold covers : {392}*784
   29-fold covers : {406}*812
   30-fold covers : {420}*840
   31-fold covers : {434}*868
   32-fold covers : {448}*896
   33-fold covers : {462}*924
   34-fold covers : {476}*952
   35-fold covers : {490}*980
   36-fold covers : {504}*1008
   37-fold covers : {518}*1036
   38-fold covers : {532}*1064
   39-fold covers : {546}*1092
   40-fold covers : {560}*1120
   41-fold covers : {574}*1148
   42-fold covers : {588}*1176
   43-fold covers : {602}*1204
   44-fold covers : {616}*1232
   45-fold covers : {630}*1260
   46-fold covers : {644}*1288
   47-fold covers : {658}*1316
   48-fold covers : {672}*1344
   49-fold covers : {686}*1372
   50-fold covers : {700}*1400
   51-fold covers : {714}*1428
   52-fold covers : {728}*1456
   53-fold covers : {742}*1484
   54-fold covers : {756}*1512
   55-fold covers : {770}*1540
   56-fold covers : {784}*1568
   57-fold covers : {798}*1596
   58-fold covers : {812}*1624
   59-fold covers : {826}*1652
   60-fold covers : {840}*1680
   61-fold covers : {854}*1708
   62-fold covers : {868}*1736
   63-fold covers : {882}*1764
   64-fold covers : {896}*1792
   65-fold covers : {910}*1820
   66-fold covers : {924}*1848
   67-fold covers : {938}*1876
   68-fold covers : {952}*1904
   69-fold covers : {966}*1932
   70-fold covers : {980}*1960
   71-fold covers : {994}*1988
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(14)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
poly := sub<Sym(14)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope