include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,14,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,14,2}*1568b
if this polytope has a name.
Group : SmallGroup(1568,917)
Rank : 4
Schlafli Type : {8,14,2}
Number of vertices, edges, etc : 28, 196, 49, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,32)( 3,14)( 4,38)( 5,20)( 6,44)( 7,26)( 8,34)(10,40)(11,15)(12,46)
(13,28)(16,42)(18,48)(19,23)(21,29)(22,37)(24,43)(27,31)(30,45)(35,39)
(36,47);;
s1 := ( 2,46)( 3,42)( 4,31)( 5,27)( 6,16)( 7,12)( 8,30)( 9,26)(10,15)(13,45)
(14,41)(17,44)(18,40)(19,29)(20,25)(22,39)(23,35)(28,43)(32,49)(33,38)
(36,48);;
s2 := ( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,44)(16,43)(17,49)
(18,48)(19,47)(20,46)(21,45)(22,37)(23,36)(24,42)(25,41)(26,40)(27,39)(28,38)
(29,30)(31,35)(32,34);;
s3 := (50,51);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(51)!( 2,32)( 3,14)( 4,38)( 5,20)( 6,44)( 7,26)( 8,34)(10,40)(11,15)
(12,46)(13,28)(16,42)(18,48)(19,23)(21,29)(22,37)(24,43)(27,31)(30,45)(35,39)
(36,47);
s1 := Sym(51)!( 2,46)( 3,42)( 4,31)( 5,27)( 6,16)( 7,12)( 8,30)( 9,26)(10,15)
(13,45)(14,41)(17,44)(18,40)(19,29)(20,25)(22,39)(23,35)(28,43)(32,49)(33,38)
(36,48);
s2 := Sym(51)!( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,44)(16,43)
(17,49)(18,48)(19,47)(20,46)(21,45)(22,37)(23,36)(24,42)(25,41)(26,40)(27,39)
(28,38)(29,30)(31,35)(32,34);
s3 := Sym(51)!(50,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1 >;
to this polytope