Polytope of Type {2,14,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,8}*1568b
if this polytope has a name.
Group : SmallGroup(1568,917)
Rank : 4
Schlafli Type : {2,14,8}
Number of vertices, edges, etc : 2, 49, 196, 28
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 9)( 5, 8)( 6, 7)(10,45)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)
(17,38)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,31)(25,37)(26,36)(27,35)
(28,34)(29,33)(30,32);;
s2 := ( 3, 4)( 5, 9)( 6, 8)(10,16)(11,15)(12,14)(17,21)(18,20)(22,23)(24,26)
(27,30)(28,29)(32,37)(33,36)(34,35)(38,43)(39,42)(40,41)(45,48)(46,47)
(49,51);;
s3 := ( 4,48)( 5,44)( 6,33)( 7,29)( 8,18)( 9,14)(10,32)(11,28)(12,17)(15,47)
(16,43)(19,46)(20,42)(21,31)(22,27)(24,41)(25,37)(30,45)(34,51)(35,40)
(38,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!(1,2);
s1 := Sym(51)!( 4, 9)( 5, 8)( 6, 7)(10,45)(11,51)(12,50)(13,49)(14,48)(15,47)
(16,46)(17,38)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,31)(25,37)(26,36)
(27,35)(28,34)(29,33)(30,32);
s2 := Sym(51)!( 3, 4)( 5, 9)( 6, 8)(10,16)(11,15)(12,14)(17,21)(18,20)(22,23)
(24,26)(27,30)(28,29)(32,37)(33,36)(34,35)(38,43)(39,42)(40,41)(45,48)(46,47)
(49,51);
s3 := Sym(51)!( 4,48)( 5,44)( 6,33)( 7,29)( 8,18)( 9,14)(10,32)(11,28)(12,17)
(15,47)(16,43)(19,46)(20,42)(21,31)(22,27)(24,41)(25,37)(30,45)(34,51)(35,40)
(38,50);
poly := sub<Sym(51)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1 >; 
 

to this polytope