Polytope of Type {2,14,14,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,14,2}*1568a
if this polytope has a name.
Group : SmallGroup(1568,925)
Rank : 5
Schlafli Type : {2,14,14,2}
Number of vertices, edges, etc : 2, 14, 98, 14, 2
Order of s0s1s2s3s4 : 14
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   7-fold quotients : {2,2,14,2}*224, {2,14,2,2}*224
   14-fold quotients : {2,2,7,2}*112, {2,7,2,2}*112
   49-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 18, 23)( 19, 22)
( 20, 21)( 25, 30)( 26, 29)( 27, 28)( 32, 37)( 33, 36)( 34, 35)( 39, 44)
( 40, 43)( 41, 42)( 46, 51)( 47, 50)( 48, 49)( 53, 58)( 54, 57)( 55, 56)
( 60, 65)( 61, 64)( 62, 63)( 67, 72)( 68, 71)( 69, 70)( 74, 79)( 75, 78)
( 76, 77)( 81, 86)( 82, 85)( 83, 84)( 88, 93)( 89, 92)( 90, 91)( 95,100)
( 96, 99)( 97, 98);;
s2 := (  3,  4)(  5,  9)(  6,  8)( 10, 46)( 11, 45)( 12, 51)( 13, 50)( 14, 49)
( 15, 48)( 16, 47)( 17, 39)( 18, 38)( 19, 44)( 20, 43)( 21, 42)( 22, 41)
( 23, 40)( 24, 32)( 25, 31)( 26, 37)( 27, 36)( 28, 35)( 29, 34)( 30, 33)
( 52, 53)( 54, 58)( 55, 57)( 59, 95)( 60, 94)( 61,100)( 62, 99)( 63, 98)
( 64, 97)( 65, 96)( 66, 88)( 67, 87)( 68, 93)( 69, 92)( 70, 91)( 71, 90)
( 72, 89)( 73, 81)( 74, 80)( 75, 86)( 76, 85)( 77, 84)( 78, 83)( 79, 82);;
s3 := (  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)(  8, 64)(  9, 65)( 10, 52)
( 11, 53)( 12, 54)( 13, 55)( 14, 56)( 15, 57)( 16, 58)( 17, 94)( 18, 95)
( 19, 96)( 20, 97)( 21, 98)( 22, 99)( 23,100)( 24, 87)( 25, 88)( 26, 89)
( 27, 90)( 28, 91)( 29, 92)( 30, 93)( 31, 80)( 32, 81)( 33, 82)( 34, 83)
( 35, 84)( 36, 85)( 37, 86)( 38, 73)( 39, 74)( 40, 75)( 41, 76)( 42, 77)
( 43, 78)( 44, 79)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)( 50, 71)
( 51, 72);;
s4 := (101,102);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(102)!(1,2);
s1 := Sym(102)!(  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 18, 23)
( 19, 22)( 20, 21)( 25, 30)( 26, 29)( 27, 28)( 32, 37)( 33, 36)( 34, 35)
( 39, 44)( 40, 43)( 41, 42)( 46, 51)( 47, 50)( 48, 49)( 53, 58)( 54, 57)
( 55, 56)( 60, 65)( 61, 64)( 62, 63)( 67, 72)( 68, 71)( 69, 70)( 74, 79)
( 75, 78)( 76, 77)( 81, 86)( 82, 85)( 83, 84)( 88, 93)( 89, 92)( 90, 91)
( 95,100)( 96, 99)( 97, 98);
s2 := Sym(102)!(  3,  4)(  5,  9)(  6,  8)( 10, 46)( 11, 45)( 12, 51)( 13, 50)
( 14, 49)( 15, 48)( 16, 47)( 17, 39)( 18, 38)( 19, 44)( 20, 43)( 21, 42)
( 22, 41)( 23, 40)( 24, 32)( 25, 31)( 26, 37)( 27, 36)( 28, 35)( 29, 34)
( 30, 33)( 52, 53)( 54, 58)( 55, 57)( 59, 95)( 60, 94)( 61,100)( 62, 99)
( 63, 98)( 64, 97)( 65, 96)( 66, 88)( 67, 87)( 68, 93)( 69, 92)( 70, 91)
( 71, 90)( 72, 89)( 73, 81)( 74, 80)( 75, 86)( 76, 85)( 77, 84)( 78, 83)
( 79, 82);
s3 := Sym(102)!(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)(  8, 64)(  9, 65)
( 10, 52)( 11, 53)( 12, 54)( 13, 55)( 14, 56)( 15, 57)( 16, 58)( 17, 94)
( 18, 95)( 19, 96)( 20, 97)( 21, 98)( 22, 99)( 23,100)( 24, 87)( 25, 88)
( 26, 89)( 27, 90)( 28, 91)( 29, 92)( 30, 93)( 31, 80)( 32, 81)( 33, 82)
( 34, 83)( 35, 84)( 36, 85)( 37, 86)( 38, 73)( 39, 74)( 40, 75)( 41, 76)
( 42, 77)( 43, 78)( 44, 79)( 45, 66)( 46, 67)( 47, 68)( 48, 69)( 49, 70)
( 50, 71)( 51, 72);
s4 := Sym(102)!(101,102);
poly := sub<Sym(102)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope