include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {33,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {33,12}*1584
if this polytope has a name.
Group : SmallGroup(1584,662)
Rank : 3
Schlafli Type : {33,12}
Number of vertices, edges, etc : 66, 396, 24
Order of s0s1s2 : 66
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {33,4}*528
4-fold quotients : {33,6}*396
6-fold quotients : {33,4}*264
11-fold quotients : {3,12}*144
12-fold quotients : {33,2}*132
33-fold quotients : {3,4}*48
36-fold quotients : {11,2}*44
44-fold quotients : {3,6}*36
66-fold quotients : {3,4}*24
132-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 41)( 6, 42)( 7, 44)( 8, 43)( 9, 37)( 10, 38)( 11, 40)
( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)
( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)( 47, 92)
( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)( 55,128)
( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)
( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)( 71,112)
( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)
( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)( 87, 96)
( 88, 95);;
s1 := ( 1, 49)( 2, 52)( 3, 51)( 4, 50)( 5, 45)( 6, 48)( 7, 47)( 8, 46)
( 9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 81)( 14, 84)( 15, 83)( 16, 82)
( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 73)( 22, 76)( 23, 75)( 24, 74)
( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 37, 57)( 38, 60)( 39, 59)( 40, 58)
( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 89, 93)( 90, 96)( 91, 95)( 92, 94)
( 97,129)( 98,132)( 99,131)(100,130)(101,125)(102,128)(103,127)(104,126)
(105,121)(106,124)(107,123)(108,122)(109,117)(110,120)(111,119)(112,118)
(114,116);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 90)( 46, 89)
( 47, 92)( 48, 91)( 49, 94)( 50, 93)( 51, 96)( 52, 95)( 53, 98)( 54, 97)
( 55,100)( 56, 99)( 57,102)( 58,101)( 59,104)( 60,103)( 61,106)( 62,105)
( 63,108)( 64,107)( 65,110)( 66,109)( 67,112)( 68,111)( 69,114)( 70,113)
( 71,116)( 72,115)( 73,118)( 74,117)( 75,120)( 76,119)( 77,122)( 78,121)
( 79,124)( 80,123)( 81,126)( 82,125)( 83,128)( 84,127)( 85,130)( 86,129)
( 87,132)( 88,131);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(132)!( 3, 4)( 5, 41)( 6, 42)( 7, 44)( 8, 43)( 9, 37)( 10, 38)
( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)
( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)
( 47, 92)( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)
( 55,128)( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)
( 63,120)( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)
( 71,112)( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)
( 79,104)( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)
( 87, 96)( 88, 95);
s1 := Sym(132)!( 1, 49)( 2, 52)( 3, 51)( 4, 50)( 5, 45)( 6, 48)( 7, 47)
( 8, 46)( 9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 81)( 14, 84)( 15, 83)
( 16, 82)( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 73)( 22, 76)( 23, 75)
( 24, 74)( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 37, 57)( 38, 60)( 39, 59)
( 40, 58)( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 89, 93)( 90, 96)( 91, 95)
( 92, 94)( 97,129)( 98,132)( 99,131)(100,130)(101,125)(102,128)(103,127)
(104,126)(105,121)(106,124)(107,123)(108,122)(109,117)(110,120)(111,119)
(112,118)(114,116);
s2 := Sym(132)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 90)
( 46, 89)( 47, 92)( 48, 91)( 49, 94)( 50, 93)( 51, 96)( 52, 95)( 53, 98)
( 54, 97)( 55,100)( 56, 99)( 57,102)( 58,101)( 59,104)( 60,103)( 61,106)
( 62,105)( 63,108)( 64,107)( 65,110)( 66,109)( 67,112)( 68,111)( 69,114)
( 70,113)( 71,116)( 72,115)( 73,118)( 74,117)( 75,120)( 76,119)( 77,122)
( 78,121)( 79,124)( 80,123)( 81,126)( 82,125)( 83,128)( 84,127)( 85,130)
( 86,129)( 87,132)( 88,131);
poly := sub<Sym(132)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope