include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {33}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {33}*66
Also Known As : 33-gon, {33}. if this polytope has another name.
Group : SmallGroup(66,3)
Rank : 2
Schlafli Type : {33}
Number of vertices, edges, etc : 33, 33
Order of s0s1 : 33
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{33,2} of size 132
{33,4} of size 264
{33,6} of size 396
{33,6} of size 528
{33,4} of size 528
{33,12} of size 1056
{33,8} of size 1056
{33,6} of size 1188
{33,10} of size 1320
{33,22} of size 1452
{33,12} of size 1584
{33,6} of size 1584
Vertex Figure Of :
{2,33} of size 132
{4,33} of size 264
{6,33} of size 396
{6,33} of size 528
{4,33} of size 528
{12,33} of size 1056
{8,33} of size 1056
{6,33} of size 1188
{10,33} of size 1320
{22,33} of size 1452
{12,33} of size 1584
{6,33} of size 1584
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {11}*22
11-fold quotients : {3}*6
Covers (Minimal Covers in Boldface) :
2-fold covers : {66}*132
3-fold covers : {99}*198
4-fold covers : {132}*264
5-fold covers : {165}*330
6-fold covers : {198}*396
7-fold covers : {231}*462
8-fold covers : {264}*528
9-fold covers : {297}*594
10-fold covers : {330}*660
11-fold covers : {363}*726
12-fold covers : {396}*792
13-fold covers : {429}*858
14-fold covers : {462}*924
15-fold covers : {495}*990
16-fold covers : {528}*1056
17-fold covers : {561}*1122
18-fold covers : {594}*1188
19-fold covers : {627}*1254
20-fold covers : {660}*1320
21-fold covers : {693}*1386
22-fold covers : {726}*1452
23-fold covers : {759}*1518
24-fold covers : {792}*1584
25-fold covers : {825}*1650
26-fold covers : {858}*1716
27-fold covers : {891}*1782
28-fold covers : {924}*1848
29-fold covers : {957}*1914
30-fold covers : {990}*1980
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(33)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);
s1 := Sym(33)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32);
poly := sub<Sym(33)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope