include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,66}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,66}*1584
if this polytope has a name.
Group : SmallGroup(1584,688)
Rank : 5
Schlafli Type : {3,2,2,66}
Number of vertices, edges, etc : 3, 3, 2, 66, 66
Order of s0s1s2s3s4 : 66
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,33}*792
3-fold quotients : {3,2,2,22}*528
6-fold quotients : {3,2,2,11}*264
11-fold quotients : {3,2,2,6}*144
22-fold quotients : {3,2,2,3}*72
33-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7,16)( 8,15)( 9,14)(10,13)(11,12)(17,28)(18,38)(19,37)(20,36)(21,35)
(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(40,49)(41,48)(42,47)(43,46)(44,45)
(50,61)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)
(60,62);;
s4 := ( 6,51)( 7,50)( 8,60)( 9,59)(10,58)(11,57)(12,56)(13,55)(14,54)(15,53)
(16,52)(17,40)(18,39)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)
(27,41)(28,62)(29,61)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)
(38,63);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(71)!(2,3);
s1 := Sym(71)!(1,2);
s2 := Sym(71)!(4,5);
s3 := Sym(71)!( 7,16)( 8,15)( 9,14)(10,13)(11,12)(17,28)(18,38)(19,37)(20,36)
(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(40,49)(41,48)(42,47)(43,46)
(44,45)(50,61)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)
(60,62);
s4 := Sym(71)!( 6,51)( 7,50)( 8,60)( 9,59)(10,58)(11,57)(12,56)(13,55)(14,54)
(15,53)(16,52)(17,40)(18,39)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)
(26,42)(27,41)(28,62)(29,61)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)
(37,64)(38,63);
poly := sub<Sym(71)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope