include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {66,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {66,6,2}*1584c
if this polytope has a name.
Group : SmallGroup(1584,688)
Rank : 4
Schlafli Type : {66,6,2}
Number of vertices, edges, etc : 66, 198, 6, 2
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {33,6,2}*792
3-fold quotients : {66,2,2}*528
6-fold quotients : {33,2,2}*264
9-fold quotients : {22,2,2}*176
11-fold quotients : {6,6,2}*144c
18-fold quotients : {11,2,2}*88
22-fold quotients : {3,6,2}*72
33-fold quotients : {6,2,2}*48
66-fold quotients : {3,2,2}*24
99-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 12, 23)( 13, 33)( 14, 32)
( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)( 22, 24)
( 34, 67)( 35, 77)( 36, 76)( 37, 75)( 38, 74)( 39, 73)( 40, 72)( 41, 71)
( 42, 70)( 43, 69)( 44, 68)( 45, 89)( 46, 99)( 47, 98)( 48, 97)( 49, 96)
( 50, 95)( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 90)( 56, 78)( 57, 88)
( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)
( 66, 79)(101,110)(102,109)(103,108)(104,107)(105,106)(111,122)(112,132)
(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)
(121,123)(133,166)(134,176)(135,175)(136,174)(137,173)(138,172)(139,171)
(140,170)(141,169)(142,168)(143,167)(144,188)(145,198)(146,197)(147,196)
(148,195)(149,194)(150,193)(151,192)(152,191)(153,190)(154,189)(155,177)
(156,187)(157,186)(158,185)(159,184)(160,183)(161,182)(162,181)(163,180)
(164,179)(165,178);;
s1 := ( 1,145)( 2,144)( 3,154)( 4,153)( 5,152)( 6,151)( 7,150)( 8,149)
( 9,148)( 10,147)( 11,146)( 12,134)( 13,133)( 14,143)( 15,142)( 16,141)
( 17,140)( 18,139)( 19,138)( 20,137)( 21,136)( 22,135)( 23,156)( 24,155)
( 25,165)( 26,164)( 27,163)( 28,162)( 29,161)( 30,160)( 31,159)( 32,158)
( 33,157)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)( 40,117)
( 41,116)( 42,115)( 43,114)( 44,113)( 45,101)( 46,100)( 47,110)( 48,109)
( 49,108)( 50,107)( 51,106)( 52,105)( 53,104)( 54,103)( 55,102)( 56,123)
( 57,122)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)( 64,126)
( 65,125)( 66,124)( 67,178)( 68,177)( 69,187)( 70,186)( 71,185)( 72,184)
( 73,183)( 74,182)( 75,181)( 76,180)( 77,179)( 78,167)( 79,166)( 80,176)
( 81,175)( 82,174)( 83,173)( 84,172)( 85,171)( 86,170)( 87,169)( 88,168)
( 89,189)( 90,188)( 91,198)( 92,197)( 93,196)( 94,195)( 95,194)( 96,193)
( 97,192)( 98,191)( 99,190);;
s2 := ( 34, 67)( 35, 68)( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)( 41, 74)
( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)
( 50, 83)( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)( 57, 90)
( 58, 91)( 59, 92)( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)( 65, 98)
( 66, 99)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)(139,172)
(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)(147,180)
(148,181)(149,182)(150,183)(151,184)(152,185)(153,186)(154,187)(155,188)
(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)(162,195)(163,196)
(164,197)(165,198);;
s3 := (199,200);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(200)!( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 12, 23)( 13, 33)
( 14, 32)( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)
( 22, 24)( 34, 67)( 35, 77)( 36, 76)( 37, 75)( 38, 74)( 39, 73)( 40, 72)
( 41, 71)( 42, 70)( 43, 69)( 44, 68)( 45, 89)( 46, 99)( 47, 98)( 48, 97)
( 49, 96)( 50, 95)( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 90)( 56, 78)
( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)
( 65, 80)( 66, 79)(101,110)(102,109)(103,108)(104,107)(105,106)(111,122)
(112,132)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)
(120,124)(121,123)(133,166)(134,176)(135,175)(136,174)(137,173)(138,172)
(139,171)(140,170)(141,169)(142,168)(143,167)(144,188)(145,198)(146,197)
(147,196)(148,195)(149,194)(150,193)(151,192)(152,191)(153,190)(154,189)
(155,177)(156,187)(157,186)(158,185)(159,184)(160,183)(161,182)(162,181)
(163,180)(164,179)(165,178);
s1 := Sym(200)!( 1,145)( 2,144)( 3,154)( 4,153)( 5,152)( 6,151)( 7,150)
( 8,149)( 9,148)( 10,147)( 11,146)( 12,134)( 13,133)( 14,143)( 15,142)
( 16,141)( 17,140)( 18,139)( 19,138)( 20,137)( 21,136)( 22,135)( 23,156)
( 24,155)( 25,165)( 26,164)( 27,163)( 28,162)( 29,161)( 30,160)( 31,159)
( 32,158)( 33,157)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)
( 40,117)( 41,116)( 42,115)( 43,114)( 44,113)( 45,101)( 46,100)( 47,110)
( 48,109)( 49,108)( 50,107)( 51,106)( 52,105)( 53,104)( 54,103)( 55,102)
( 56,123)( 57,122)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)
( 64,126)( 65,125)( 66,124)( 67,178)( 68,177)( 69,187)( 70,186)( 71,185)
( 72,184)( 73,183)( 74,182)( 75,181)( 76,180)( 77,179)( 78,167)( 79,166)
( 80,176)( 81,175)( 82,174)( 83,173)( 84,172)( 85,171)( 86,170)( 87,169)
( 88,168)( 89,189)( 90,188)( 91,198)( 92,197)( 93,196)( 94,195)( 95,194)
( 96,193)( 97,192)( 98,191)( 99,190);
s2 := Sym(200)!( 34, 67)( 35, 68)( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)
( 41, 74)( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)
( 49, 82)( 50, 83)( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)
( 57, 90)( 58, 91)( 59, 92)( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)
( 65, 98)( 66, 99)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)
(139,172)(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)
(147,180)(148,181)(149,182)(150,183)(151,184)(152,185)(153,186)(154,187)
(155,188)(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)(162,195)
(163,196)(164,197)(165,198);
s3 := Sym(200)!(199,200);
poly := sub<Sym(200)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope