Polytope of Type {10,20,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,20,2,2}*1600c
if this polytope has a name.
Group : SmallGroup(1600,10205)
Rank : 5
Schlafli Type : {10,20,2,2}
Number of vertices, edges, etc : 10, 100, 20, 2, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,2,2}*800c
   4-fold quotients : {5,10,2,2}*400
   5-fold quotients : {10,4,2,2}*320
   10-fold quotients : {10,2,2,2}*160
   20-fold quotients : {5,2,2,2}*80
   25-fold quotients : {2,4,2,2}*64
   50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)( 90, 92);;
s1 := (  1, 57)(  2, 56)(  3, 60)(  4, 59)(  5, 58)(  6, 52)(  7, 51)(  8, 55)
(  9, 54)( 10, 53)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)( 16, 67)
( 17, 66)( 18, 70)( 19, 69)( 20, 68)( 21, 62)( 22, 61)( 23, 65)( 24, 64)
( 25, 63)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 77)( 32, 76)
( 33, 80)( 34, 79)( 35, 78)( 36, 97)( 37, 96)( 38,100)( 39, 99)( 40, 98)
( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)( 48, 90)
( 49, 89)( 50, 88);;
s2 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 51, 76)( 52, 80)( 53, 79)( 54, 78)
( 55, 77)( 56, 81)( 57, 85)( 58, 84)( 59, 83)( 60, 82)( 61, 86)( 62, 90)
( 63, 89)( 64, 88)( 65, 87)( 66, 91)( 67, 95)( 68, 94)( 69, 93)( 70, 92)
( 71, 96)( 72,100)( 73, 99)( 74, 98)( 75, 97);;
s3 := (101,102);;
s4 := (103,104);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(104)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92);
s1 := Sym(104)!(  1, 57)(  2, 56)(  3, 60)(  4, 59)(  5, 58)(  6, 52)(  7, 51)
(  8, 55)(  9, 54)( 10, 53)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)
( 16, 67)( 17, 66)( 18, 70)( 19, 69)( 20, 68)( 21, 62)( 22, 61)( 23, 65)
( 24, 64)( 25, 63)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 77)
( 32, 76)( 33, 80)( 34, 79)( 35, 78)( 36, 97)( 37, 96)( 38,100)( 39, 99)
( 40, 98)( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)
( 48, 90)( 49, 89)( 50, 88);
s2 := Sym(104)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 51, 76)( 52, 80)( 53, 79)
( 54, 78)( 55, 77)( 56, 81)( 57, 85)( 58, 84)( 59, 83)( 60, 82)( 61, 86)
( 62, 90)( 63, 89)( 64, 88)( 65, 87)( 66, 91)( 67, 95)( 68, 94)( 69, 93)
( 70, 92)( 71, 96)( 72,100)( 73, 99)( 74, 98)( 75, 97);
s3 := Sym(104)!(101,102);
s4 := Sym(104)!(103,104);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope