include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,20,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,20,10}*1600c
if this polytope has a name.
Group : SmallGroup(1600,10205)
Rank : 5
Schlafli Type : {2,2,20,10}
Number of vertices, edges, etc : 2, 2, 20, 100, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,10,10}*800b
4-fold quotients : {2,2,10,5}*400
5-fold quotients : {2,2,4,10}*320
10-fold quotients : {2,2,2,10}*160
20-fold quotients : {2,2,2,5}*80
25-fold quotients : {2,2,4,2}*64
50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)( 11, 14)( 12, 13)( 16, 19)( 17, 18)( 21, 24)( 22, 23)
( 26, 29)( 27, 28)( 31, 34)( 32, 33)( 36, 39)( 37, 38)( 41, 44)( 42, 43)
( 46, 49)( 47, 48)( 51, 54)( 52, 53)( 55, 80)( 56, 84)( 57, 83)( 58, 82)
( 59, 81)( 60, 85)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 90)( 66, 94)
( 67, 93)( 68, 92)( 69, 91)( 70, 95)( 71, 99)( 72, 98)( 73, 97)( 74, 96)
( 75,100)( 76,104)( 77,103)( 78,102)( 79,101);;
s3 := ( 5, 56)( 6, 55)( 7, 59)( 8, 58)( 9, 57)( 10, 76)( 11, 75)( 12, 79)
( 13, 78)( 14, 77)( 15, 71)( 16, 70)( 17, 74)( 18, 73)( 19, 72)( 20, 66)
( 21, 65)( 22, 69)( 23, 68)( 24, 67)( 25, 61)( 26, 60)( 27, 64)( 28, 63)
( 29, 62)( 30, 81)( 31, 80)( 32, 84)( 33, 83)( 34, 82)( 35,101)( 36,100)
( 37,104)( 38,103)( 39,102)( 40, 96)( 41, 95)( 42, 99)( 43, 98)( 44, 97)
( 45, 91)( 46, 90)( 47, 94)( 48, 93)( 49, 92)( 50, 86)( 51, 85)( 52, 89)
( 53, 88)( 54, 87);;
s4 := ( 5, 10)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 15, 25)( 16, 29)( 17, 28)
( 18, 27)( 19, 26)( 21, 24)( 22, 23)( 30, 35)( 31, 39)( 32, 38)( 33, 37)
( 34, 36)( 40, 50)( 41, 54)( 42, 53)( 43, 52)( 44, 51)( 46, 49)( 47, 48)
( 55, 60)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 65, 75)( 66, 79)( 67, 78)
( 68, 77)( 69, 76)( 71, 74)( 72, 73)( 80, 85)( 81, 89)( 82, 88)( 83, 87)
( 84, 86)( 90,100)( 91,104)( 92,103)( 93,102)( 94,101)( 96, 99)( 97, 98);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!(3,4);
s2 := Sym(104)!( 6, 9)( 7, 8)( 11, 14)( 12, 13)( 16, 19)( 17, 18)( 21, 24)
( 22, 23)( 26, 29)( 27, 28)( 31, 34)( 32, 33)( 36, 39)( 37, 38)( 41, 44)
( 42, 43)( 46, 49)( 47, 48)( 51, 54)( 52, 53)( 55, 80)( 56, 84)( 57, 83)
( 58, 82)( 59, 81)( 60, 85)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 90)
( 66, 94)( 67, 93)( 68, 92)( 69, 91)( 70, 95)( 71, 99)( 72, 98)( 73, 97)
( 74, 96)( 75,100)( 76,104)( 77,103)( 78,102)( 79,101);
s3 := Sym(104)!( 5, 56)( 6, 55)( 7, 59)( 8, 58)( 9, 57)( 10, 76)( 11, 75)
( 12, 79)( 13, 78)( 14, 77)( 15, 71)( 16, 70)( 17, 74)( 18, 73)( 19, 72)
( 20, 66)( 21, 65)( 22, 69)( 23, 68)( 24, 67)( 25, 61)( 26, 60)( 27, 64)
( 28, 63)( 29, 62)( 30, 81)( 31, 80)( 32, 84)( 33, 83)( 34, 82)( 35,101)
( 36,100)( 37,104)( 38,103)( 39,102)( 40, 96)( 41, 95)( 42, 99)( 43, 98)
( 44, 97)( 45, 91)( 46, 90)( 47, 94)( 48, 93)( 49, 92)( 50, 86)( 51, 85)
( 52, 89)( 53, 88)( 54, 87);
s4 := Sym(104)!( 5, 10)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 15, 25)( 16, 29)
( 17, 28)( 18, 27)( 19, 26)( 21, 24)( 22, 23)( 30, 35)( 31, 39)( 32, 38)
( 33, 37)( 34, 36)( 40, 50)( 41, 54)( 42, 53)( 43, 52)( 44, 51)( 46, 49)
( 47, 48)( 55, 60)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 65, 75)( 66, 79)
( 67, 78)( 68, 77)( 69, 76)( 71, 74)( 72, 73)( 80, 85)( 81, 89)( 82, 88)
( 83, 87)( 84, 86)( 90,100)( 91,104)( 92,103)( 93,102)( 94,101)( 96, 99)
( 97, 98);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope