Polytope of Type {4,5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,5,10}*1600
if this polytope has a name.
Group : SmallGroup(1600,10261)
Rank : 4
Schlafli Type : {4,5,10}
Number of vertices, edges, etc : 16, 40, 100, 10
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {4,5,2}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)(18,26)
(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)
(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)
(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80);;
s1 := ( 3, 4)( 5, 6)( 9,16)(10,15)(11,13)(12,14)(17,65)(18,66)(19,68)(20,67)
(21,70)(22,69)(23,71)(24,72)(25,80)(26,79)(27,77)(28,78)(29,75)(30,76)(31,74)
(32,73)(33,49)(34,50)(35,52)(36,51)(37,54)(38,53)(39,55)(40,56)(41,64)(42,63)
(43,61)(44,62)(45,59)(46,60)(47,58)(48,57);;
s2 := ( 1,17)( 2,26)( 3,27)( 4,20)( 5,32)( 6,23)( 7,22)( 8,29)( 9,25)(10,18)
(11,19)(12,28)(13,24)(14,31)(15,30)(16,21)(33,65)(34,74)(35,75)(36,68)(37,80)
(38,71)(39,70)(40,77)(41,73)(42,66)(43,67)(44,76)(45,72)(46,79)(47,78)(48,69)
(50,58)(51,59)(53,64)(54,55)(56,61)(62,63);;
s3 := (17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)
(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)(37,53)
(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)
(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)
(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)
(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80);
s1 := Sym(80)!( 3, 4)( 5, 6)( 9,16)(10,15)(11,13)(12,14)(17,65)(18,66)(19,68)
(20,67)(21,70)(22,69)(23,71)(24,72)(25,80)(26,79)(27,77)(28,78)(29,75)(30,76)
(31,74)(32,73)(33,49)(34,50)(35,52)(36,51)(37,54)(38,53)(39,55)(40,56)(41,64)
(42,63)(43,61)(44,62)(45,59)(46,60)(47,58)(48,57);
s2 := Sym(80)!( 1,17)( 2,26)( 3,27)( 4,20)( 5,32)( 6,23)( 7,22)( 8,29)( 9,25)
(10,18)(11,19)(12,28)(13,24)(14,31)(15,30)(16,21)(33,65)(34,74)(35,75)(36,68)
(37,80)(38,71)(39,70)(40,77)(41,73)(42,66)(43,67)(44,76)(45,72)(46,79)(47,78)
(48,69)(50,58)(51,59)(53,64)(54,55)(56,61)(62,63);
s3 := Sym(80)!(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)
(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)
(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);
poly := sub<Sym(80)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 >; 
 
References : None.
to this polytope