Polytope of Type {10,5,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,5,4}*1600
if this polytope has a name.
Group : SmallGroup(1600,10261)
Rank : 4
Schlafli Type : {10,5,4}
Number of vertices, edges, etc : 10, 100, 40, 16
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {2,5,4}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)
(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)(37,53)
(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);;
s1 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,22)( 6,21)( 7,23)( 8,24)( 9,32)(10,31)
(11,29)(12,30)(13,27)(14,28)(15,26)(16,25)(33,65)(34,66)(35,68)(36,67)(37,70)
(38,69)(39,71)(40,72)(41,80)(42,79)(43,77)(44,78)(45,75)(46,76)(47,74)(48,73)
(51,52)(53,54)(57,64)(58,63)(59,61)(60,62);;
s2 := ( 2,10)( 3,11)( 5,16)( 6, 7)( 8,13)(14,15)(17,65)(18,74)(19,75)(20,68)
(21,80)(22,71)(23,70)(24,77)(25,73)(26,66)(27,67)(28,76)(29,72)(30,79)(31,78)
(32,69)(33,49)(34,58)(35,59)(36,52)(37,64)(38,55)(39,54)(40,61)(41,57)(42,50)
(43,51)(44,60)(45,56)(46,63)(47,62)(48,53);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)
(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)
(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)
(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);
s1 := Sym(80)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,22)( 6,21)( 7,23)( 8,24)( 9,32)
(10,31)(11,29)(12,30)(13,27)(14,28)(15,26)(16,25)(33,65)(34,66)(35,68)(36,67)
(37,70)(38,69)(39,71)(40,72)(41,80)(42,79)(43,77)(44,78)(45,75)(46,76)(47,74)
(48,73)(51,52)(53,54)(57,64)(58,63)(59,61)(60,62);
s2 := Sym(80)!( 2,10)( 3,11)( 5,16)( 6, 7)( 8,13)(14,15)(17,65)(18,74)(19,75)
(20,68)(21,80)(22,71)(23,70)(24,77)(25,73)(26,66)(27,67)(28,76)(29,72)(30,79)
(31,78)(32,69)(33,49)(34,58)(35,59)(36,52)(37,64)(38,55)(39,54)(40,61)(41,57)
(42,50)(43,51)(44,60)(45,56)(46,63)(47,62)(48,53);
s3 := Sym(80)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)
(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80);
poly := sub<Sym(80)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3 >; 
 
References : None.
to this polytope