include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,50}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,50}*1600
if this polytope has a name.
Group : SmallGroup(1600,2038)
Rank : 5
Schlafli Type : {2,2,4,50}
Number of vertices, edges, etc : 2, 2, 4, 100, 50
Order of s0s1s2s3s4 : 100
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,50}*800
4-fold quotients : {2,2,2,25}*400
5-fold quotients : {2,2,4,10}*320
10-fold quotients : {2,2,2,10}*160
20-fold quotients : {2,2,2,5}*80
25-fold quotients : {2,2,4,2}*64
50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 55, 80)( 56, 81)( 57, 82)( 58, 83)( 59, 84)( 60, 85)( 61, 86)( 62, 87)
( 63, 88)( 64, 89)( 65, 90)( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)
( 71, 96)( 72, 97)( 73, 98)( 74, 99)( 75,100)( 76,101)( 77,102)( 78,103)
( 79,104);;
s3 := ( 5, 55)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 76)( 11, 75)( 12, 79)
( 13, 78)( 14, 77)( 15, 71)( 16, 70)( 17, 74)( 18, 73)( 19, 72)( 20, 66)
( 21, 65)( 22, 69)( 23, 68)( 24, 67)( 25, 61)( 26, 60)( 27, 64)( 28, 63)
( 29, 62)( 30, 80)( 31, 84)( 32, 83)( 33, 82)( 34, 81)( 35,101)( 36,100)
( 37,104)( 38,103)( 39,102)( 40, 96)( 41, 95)( 42, 99)( 43, 98)( 44, 97)
( 45, 91)( 46, 90)( 47, 94)( 48, 93)( 49, 92)( 50, 86)( 51, 85)( 52, 89)
( 53, 88)( 54, 87);;
s4 := ( 5, 10)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 15, 26)( 16, 25)( 17, 29)
( 18, 28)( 19, 27)( 20, 21)( 22, 24)( 30, 35)( 31, 39)( 32, 38)( 33, 37)
( 34, 36)( 40, 51)( 41, 50)( 42, 54)( 43, 53)( 44, 52)( 45, 46)( 47, 49)
( 55, 60)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 65, 76)( 66, 75)( 67, 79)
( 68, 78)( 69, 77)( 70, 71)( 72, 74)( 80, 85)( 81, 89)( 82, 88)( 83, 87)
( 84, 86)( 90,101)( 91,100)( 92,104)( 93,103)( 94,102)( 95, 96)( 97, 99);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!(3,4);
s2 := Sym(104)!( 55, 80)( 56, 81)( 57, 82)( 58, 83)( 59, 84)( 60, 85)( 61, 86)
( 62, 87)( 63, 88)( 64, 89)( 65, 90)( 66, 91)( 67, 92)( 68, 93)( 69, 94)
( 70, 95)( 71, 96)( 72, 97)( 73, 98)( 74, 99)( 75,100)( 76,101)( 77,102)
( 78,103)( 79,104);
s3 := Sym(104)!( 5, 55)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 76)( 11, 75)
( 12, 79)( 13, 78)( 14, 77)( 15, 71)( 16, 70)( 17, 74)( 18, 73)( 19, 72)
( 20, 66)( 21, 65)( 22, 69)( 23, 68)( 24, 67)( 25, 61)( 26, 60)( 27, 64)
( 28, 63)( 29, 62)( 30, 80)( 31, 84)( 32, 83)( 33, 82)( 34, 81)( 35,101)
( 36,100)( 37,104)( 38,103)( 39,102)( 40, 96)( 41, 95)( 42, 99)( 43, 98)
( 44, 97)( 45, 91)( 46, 90)( 47, 94)( 48, 93)( 49, 92)( 50, 86)( 51, 85)
( 52, 89)( 53, 88)( 54, 87);
s4 := Sym(104)!( 5, 10)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 15, 26)( 16, 25)
( 17, 29)( 18, 28)( 19, 27)( 20, 21)( 22, 24)( 30, 35)( 31, 39)( 32, 38)
( 33, 37)( 34, 36)( 40, 51)( 41, 50)( 42, 54)( 43, 53)( 44, 52)( 45, 46)
( 47, 49)( 55, 60)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 65, 76)( 66, 75)
( 67, 79)( 68, 78)( 69, 77)( 70, 71)( 72, 74)( 80, 85)( 81, 89)( 82, 88)
( 83, 87)( 84, 86)( 90,101)( 91,100)( 92,104)( 93,103)( 94,102)( 95, 96)
( 97, 99);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope