include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {40,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,20}*1600c
Also Known As : {40,20|2}. if this polytope has another name.
Group : SmallGroup(1600,3473)
Rank : 3
Schlafli Type : {40,20}
Number of vertices, edges, etc : 40, 400, 20
Order of s0s1s2 : 40
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {40,10}*800a, {20,20}*800a
4-fold quotients : {10,20}*400a, {20,10}*400a
5-fold quotients : {40,4}*320a, {8,20}*320a
8-fold quotients : {10,10}*200a
10-fold quotients : {4,20}*160, {20,4}*160, {40,2}*160, {8,10}*160
20-fold quotients : {2,20}*80, {20,2}*80, {4,10}*80, {10,4}*80
25-fold quotients : {8,4}*64a
40-fold quotients : {2,10}*40, {10,2}*40
50-fold quotients : {4,4}*32, {8,2}*32
80-fold quotients : {2,5}*20, {5,2}*20
100-fold quotients : {2,4}*16, {4,2}*16
200-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)( 78, 79)
( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)( 98, 99)
(101,126)(102,130)(103,129)(104,128)(105,127)(106,131)(107,135)(108,134)
(109,133)(110,132)(111,136)(112,140)(113,139)(114,138)(115,137)(116,141)
(117,145)(118,144)(119,143)(120,142)(121,146)(122,150)(123,149)(124,148)
(125,147)(151,176)(152,180)(153,179)(154,178)(155,177)(156,181)(157,185)
(158,184)(159,183)(160,182)(161,186)(162,190)(163,189)(164,188)(165,187)
(166,191)(167,195)(168,194)(169,193)(170,192)(171,196)(172,200)(173,199)
(174,198)(175,197)(201,301)(202,305)(203,304)(204,303)(205,302)(206,306)
(207,310)(208,309)(209,308)(210,307)(211,311)(212,315)(213,314)(214,313)
(215,312)(216,316)(217,320)(218,319)(219,318)(220,317)(221,321)(222,325)
(223,324)(224,323)(225,322)(226,326)(227,330)(228,329)(229,328)(230,327)
(231,331)(232,335)(233,334)(234,333)(235,332)(236,336)(237,340)(238,339)
(239,338)(240,337)(241,341)(242,345)(243,344)(244,343)(245,342)(246,346)
(247,350)(248,349)(249,348)(250,347)(251,351)(252,355)(253,354)(254,353)
(255,352)(256,356)(257,360)(258,359)(259,358)(260,357)(261,361)(262,365)
(263,364)(264,363)(265,362)(266,366)(267,370)(268,369)(269,368)(270,367)
(271,371)(272,375)(273,374)(274,373)(275,372)(276,376)(277,380)(278,379)
(279,378)(280,377)(281,381)(282,385)(283,384)(284,383)(285,382)(286,386)
(287,390)(288,389)(289,388)(290,387)(291,391)(292,395)(293,394)(294,393)
(295,392)(296,396)(297,400)(298,399)(299,398)(300,397);;
s1 := ( 1,202)( 2,201)( 3,205)( 4,204)( 5,203)( 6,222)( 7,221)( 8,225)
( 9,224)( 10,223)( 11,217)( 12,216)( 13,220)( 14,219)( 15,218)( 16,212)
( 17,211)( 18,215)( 19,214)( 20,213)( 21,207)( 22,206)( 23,210)( 24,209)
( 25,208)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,247)( 32,246)
( 33,250)( 34,249)( 35,248)( 36,242)( 37,241)( 38,245)( 39,244)( 40,243)
( 41,237)( 42,236)( 43,240)( 44,239)( 45,238)( 46,232)( 47,231)( 48,235)
( 49,234)( 50,233)( 51,252)( 52,251)( 53,255)( 54,254)( 55,253)( 56,272)
( 57,271)( 58,275)( 59,274)( 60,273)( 61,267)( 62,266)( 63,270)( 64,269)
( 65,268)( 66,262)( 67,261)( 68,265)( 69,264)( 70,263)( 71,257)( 72,256)
( 73,260)( 74,259)( 75,258)( 76,277)( 77,276)( 78,280)( 79,279)( 80,278)
( 81,297)( 82,296)( 83,300)( 84,299)( 85,298)( 86,292)( 87,291)( 88,295)
( 89,294)( 90,293)( 91,287)( 92,286)( 93,290)( 94,289)( 95,288)( 96,282)
( 97,281)( 98,285)( 99,284)(100,283)(101,327)(102,326)(103,330)(104,329)
(105,328)(106,347)(107,346)(108,350)(109,349)(110,348)(111,342)(112,341)
(113,345)(114,344)(115,343)(116,337)(117,336)(118,340)(119,339)(120,338)
(121,332)(122,331)(123,335)(124,334)(125,333)(126,302)(127,301)(128,305)
(129,304)(130,303)(131,322)(132,321)(133,325)(134,324)(135,323)(136,317)
(137,316)(138,320)(139,319)(140,318)(141,312)(142,311)(143,315)(144,314)
(145,313)(146,307)(147,306)(148,310)(149,309)(150,308)(151,377)(152,376)
(153,380)(154,379)(155,378)(156,397)(157,396)(158,400)(159,399)(160,398)
(161,392)(162,391)(163,395)(164,394)(165,393)(166,387)(167,386)(168,390)
(169,389)(170,388)(171,382)(172,381)(173,385)(174,384)(175,383)(176,352)
(177,351)(178,355)(179,354)(180,353)(181,372)(182,371)(183,375)(184,374)
(185,373)(186,367)(187,366)(188,370)(189,369)(190,368)(191,362)(192,361)
(193,365)(194,364)(195,363)(196,357)(197,356)(198,360)(199,359)(200,358);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 11, 21)( 12, 22)( 13, 23)
( 14, 24)( 15, 25)( 26, 31)( 27, 32)( 28, 33)( 29, 34)( 30, 35)( 36, 46)
( 37, 47)( 38, 48)( 39, 49)( 40, 50)( 51, 56)( 52, 57)( 53, 58)( 54, 59)
( 55, 60)( 61, 71)( 62, 72)( 63, 73)( 64, 74)( 65, 75)( 76, 81)( 77, 82)
( 78, 83)( 79, 84)( 80, 85)( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)
(101,106)(102,107)(103,108)(104,109)(105,110)(111,121)(112,122)(113,123)
(114,124)(115,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,146)
(137,147)(138,148)(139,149)(140,150)(151,156)(152,157)(153,158)(154,159)
(155,160)(161,171)(162,172)(163,173)(164,174)(165,175)(176,181)(177,182)
(178,183)(179,184)(180,185)(186,196)(187,197)(188,198)(189,199)(190,200)
(201,256)(202,257)(203,258)(204,259)(205,260)(206,251)(207,252)(208,253)
(209,254)(210,255)(211,271)(212,272)(213,273)(214,274)(215,275)(216,266)
(217,267)(218,268)(219,269)(220,270)(221,261)(222,262)(223,263)(224,264)
(225,265)(226,281)(227,282)(228,283)(229,284)(230,285)(231,276)(232,277)
(233,278)(234,279)(235,280)(236,296)(237,297)(238,298)(239,299)(240,300)
(241,291)(242,292)(243,293)(244,294)(245,295)(246,286)(247,287)(248,288)
(249,289)(250,290)(301,356)(302,357)(303,358)(304,359)(305,360)(306,351)
(307,352)(308,353)(309,354)(310,355)(311,371)(312,372)(313,373)(314,374)
(315,375)(316,366)(317,367)(318,368)(319,369)(320,370)(321,361)(322,362)
(323,363)(324,364)(325,365)(326,381)(327,382)(328,383)(329,384)(330,385)
(331,376)(332,377)(333,378)(334,379)(335,380)(336,396)(337,397)(338,398)
(339,399)(340,400)(341,391)(342,392)(343,393)(344,394)(345,395)(346,386)
(347,387)(348,388)(349,389)(350,390);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(400)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)
( 78, 79)( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)
( 98, 99)(101,126)(102,130)(103,129)(104,128)(105,127)(106,131)(107,135)
(108,134)(109,133)(110,132)(111,136)(112,140)(113,139)(114,138)(115,137)
(116,141)(117,145)(118,144)(119,143)(120,142)(121,146)(122,150)(123,149)
(124,148)(125,147)(151,176)(152,180)(153,179)(154,178)(155,177)(156,181)
(157,185)(158,184)(159,183)(160,182)(161,186)(162,190)(163,189)(164,188)
(165,187)(166,191)(167,195)(168,194)(169,193)(170,192)(171,196)(172,200)
(173,199)(174,198)(175,197)(201,301)(202,305)(203,304)(204,303)(205,302)
(206,306)(207,310)(208,309)(209,308)(210,307)(211,311)(212,315)(213,314)
(214,313)(215,312)(216,316)(217,320)(218,319)(219,318)(220,317)(221,321)
(222,325)(223,324)(224,323)(225,322)(226,326)(227,330)(228,329)(229,328)
(230,327)(231,331)(232,335)(233,334)(234,333)(235,332)(236,336)(237,340)
(238,339)(239,338)(240,337)(241,341)(242,345)(243,344)(244,343)(245,342)
(246,346)(247,350)(248,349)(249,348)(250,347)(251,351)(252,355)(253,354)
(254,353)(255,352)(256,356)(257,360)(258,359)(259,358)(260,357)(261,361)
(262,365)(263,364)(264,363)(265,362)(266,366)(267,370)(268,369)(269,368)
(270,367)(271,371)(272,375)(273,374)(274,373)(275,372)(276,376)(277,380)
(278,379)(279,378)(280,377)(281,381)(282,385)(283,384)(284,383)(285,382)
(286,386)(287,390)(288,389)(289,388)(290,387)(291,391)(292,395)(293,394)
(294,393)(295,392)(296,396)(297,400)(298,399)(299,398)(300,397);
s1 := Sym(400)!( 1,202)( 2,201)( 3,205)( 4,204)( 5,203)( 6,222)( 7,221)
( 8,225)( 9,224)( 10,223)( 11,217)( 12,216)( 13,220)( 14,219)( 15,218)
( 16,212)( 17,211)( 18,215)( 19,214)( 20,213)( 21,207)( 22,206)( 23,210)
( 24,209)( 25,208)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,247)
( 32,246)( 33,250)( 34,249)( 35,248)( 36,242)( 37,241)( 38,245)( 39,244)
( 40,243)( 41,237)( 42,236)( 43,240)( 44,239)( 45,238)( 46,232)( 47,231)
( 48,235)( 49,234)( 50,233)( 51,252)( 52,251)( 53,255)( 54,254)( 55,253)
( 56,272)( 57,271)( 58,275)( 59,274)( 60,273)( 61,267)( 62,266)( 63,270)
( 64,269)( 65,268)( 66,262)( 67,261)( 68,265)( 69,264)( 70,263)( 71,257)
( 72,256)( 73,260)( 74,259)( 75,258)( 76,277)( 77,276)( 78,280)( 79,279)
( 80,278)( 81,297)( 82,296)( 83,300)( 84,299)( 85,298)( 86,292)( 87,291)
( 88,295)( 89,294)( 90,293)( 91,287)( 92,286)( 93,290)( 94,289)( 95,288)
( 96,282)( 97,281)( 98,285)( 99,284)(100,283)(101,327)(102,326)(103,330)
(104,329)(105,328)(106,347)(107,346)(108,350)(109,349)(110,348)(111,342)
(112,341)(113,345)(114,344)(115,343)(116,337)(117,336)(118,340)(119,339)
(120,338)(121,332)(122,331)(123,335)(124,334)(125,333)(126,302)(127,301)
(128,305)(129,304)(130,303)(131,322)(132,321)(133,325)(134,324)(135,323)
(136,317)(137,316)(138,320)(139,319)(140,318)(141,312)(142,311)(143,315)
(144,314)(145,313)(146,307)(147,306)(148,310)(149,309)(150,308)(151,377)
(152,376)(153,380)(154,379)(155,378)(156,397)(157,396)(158,400)(159,399)
(160,398)(161,392)(162,391)(163,395)(164,394)(165,393)(166,387)(167,386)
(168,390)(169,389)(170,388)(171,382)(172,381)(173,385)(174,384)(175,383)
(176,352)(177,351)(178,355)(179,354)(180,353)(181,372)(182,371)(183,375)
(184,374)(185,373)(186,367)(187,366)(188,370)(189,369)(190,368)(191,362)
(192,361)(193,365)(194,364)(195,363)(196,357)(197,356)(198,360)(199,359)
(200,358);
s2 := Sym(400)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 11, 21)( 12, 22)
( 13, 23)( 14, 24)( 15, 25)( 26, 31)( 27, 32)( 28, 33)( 29, 34)( 30, 35)
( 36, 46)( 37, 47)( 38, 48)( 39, 49)( 40, 50)( 51, 56)( 52, 57)( 53, 58)
( 54, 59)( 55, 60)( 61, 71)( 62, 72)( 63, 73)( 64, 74)( 65, 75)( 76, 81)
( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 86, 96)( 87, 97)( 88, 98)( 89, 99)
( 90,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,121)(112,122)
(113,123)(114,124)(115,125)(126,131)(127,132)(128,133)(129,134)(130,135)
(136,146)(137,147)(138,148)(139,149)(140,150)(151,156)(152,157)(153,158)
(154,159)(155,160)(161,171)(162,172)(163,173)(164,174)(165,175)(176,181)
(177,182)(178,183)(179,184)(180,185)(186,196)(187,197)(188,198)(189,199)
(190,200)(201,256)(202,257)(203,258)(204,259)(205,260)(206,251)(207,252)
(208,253)(209,254)(210,255)(211,271)(212,272)(213,273)(214,274)(215,275)
(216,266)(217,267)(218,268)(219,269)(220,270)(221,261)(222,262)(223,263)
(224,264)(225,265)(226,281)(227,282)(228,283)(229,284)(230,285)(231,276)
(232,277)(233,278)(234,279)(235,280)(236,296)(237,297)(238,298)(239,299)
(240,300)(241,291)(242,292)(243,293)(244,294)(245,295)(246,286)(247,287)
(248,288)(249,289)(250,290)(301,356)(302,357)(303,358)(304,359)(305,360)
(306,351)(307,352)(308,353)(309,354)(310,355)(311,371)(312,372)(313,373)
(314,374)(315,375)(316,366)(317,367)(318,368)(319,369)(320,370)(321,361)
(322,362)(323,363)(324,364)(325,365)(326,381)(327,382)(328,383)(329,384)
(330,385)(331,376)(332,377)(333,378)(334,379)(335,380)(336,396)(337,397)
(338,398)(339,399)(340,400)(341,391)(342,392)(343,393)(344,394)(345,395)
(346,386)(347,387)(348,388)(349,389)(350,390);
poly := sub<Sym(400)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope