Polytope of Type {5,2,40,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,40,2}*1600
if this polytope has a name.
Group : SmallGroup(1600,8115)
Rank : 5
Schlafli Type : {5,2,40,2}
Number of vertices, edges, etc : 5, 5, 40, 40, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,20,2}*800
   4-fold quotients : {5,2,10,2}*400
   5-fold quotients : {5,2,8,2}*320
   8-fold quotients : {5,2,5,2}*200
   10-fold quotients : {5,2,4,2}*160
   20-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,18)(19,24)(20,26)(21,25)(22,28)
(23,27)(30,35)(31,34)(32,37)(33,36)(38,39)(40,43)(41,42)(44,45);;
s3 := ( 6,12)( 7, 9)( 8,20)(10,22)(11,15)(13,17)(14,30)(16,32)(18,23)(19,25)
(21,27)(24,38)(26,40)(28,33)(29,34)(31,36)(35,44)(37,41)(39,42)(43,45);;
s4 := (46,47);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!(2,3)(4,5);
s1 := Sym(47)!(1,2)(3,4);
s2 := Sym(47)!( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,18)(19,24)(20,26)(21,25)
(22,28)(23,27)(30,35)(31,34)(32,37)(33,36)(38,39)(40,43)(41,42)(44,45);
s3 := Sym(47)!( 6,12)( 7, 9)( 8,20)(10,22)(11,15)(13,17)(14,30)(16,32)(18,23)
(19,25)(21,27)(24,38)(26,40)(28,33)(29,34)(31,36)(35,44)(37,41)(39,42)(43,45);
s4 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope