include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,10,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10,10}*1600a
Also Known As : {{8,10|2},{10,10|2}}. if this polytope has another name.
Group : SmallGroup(1600,8167)
Rank : 4
Schlafli Type : {8,10,10}
Number of vertices, edges, etc : 8, 40, 50, 10
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,10,10}*800a
4-fold quotients : {2,10,10}*400a
5-fold quotients : {8,2,10}*320, {8,10,2}*320
10-fold quotients : {8,2,5}*160, {4,2,10}*160, {4,10,2}*160
20-fold quotients : {4,2,5}*80, {2,2,10}*80, {2,10,2}*80
25-fold quotients : {8,2,2}*64
40-fold quotients : {2,2,5}*40, {2,5,2}*40
50-fold quotients : {4,2,2}*32
100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)( 56, 81)( 57, 82)( 58, 83)
( 59, 84)( 60, 85)( 61, 86)( 62, 87)( 63, 88)( 64, 89)( 65, 90)( 66, 91)
( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 96)( 72, 97)( 73, 98)( 74, 99)
( 75,100)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)(107,157)
(108,158)(109,159)(110,160)(111,161)(112,162)(113,163)(114,164)(115,165)
(116,166)(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)(123,173)
(124,174)(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)(131,181)
(132,182)(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)(139,189)
(140,190)(141,191)(142,192)(143,193)(144,194)(145,195)(146,196)(147,197)
(148,198)(149,199)(150,200);;
s1 := ( 1,101)( 2,102)( 3,103)( 4,104)( 5,105)( 6,121)( 7,122)( 8,123)
( 9,124)( 10,125)( 11,116)( 12,117)( 13,118)( 14,119)( 15,120)( 16,111)
( 17,112)( 18,113)( 19,114)( 20,115)( 21,106)( 22,107)( 23,108)( 24,109)
( 25,110)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,146)( 32,147)
( 33,148)( 34,149)( 35,150)( 36,141)( 37,142)( 38,143)( 39,144)( 40,145)
( 41,136)( 42,137)( 43,138)( 44,139)( 45,140)( 46,131)( 47,132)( 48,133)
( 49,134)( 50,135)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)( 56,196)
( 57,197)( 58,198)( 59,199)( 60,200)( 61,191)( 62,192)( 63,193)( 64,194)
( 65,195)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,181)( 72,182)
( 73,183)( 74,184)( 75,185)( 76,151)( 77,152)( 78,153)( 79,154)( 80,155)
( 81,171)( 82,172)( 83,173)( 84,174)( 85,175)( 86,166)( 87,167)( 88,168)
( 89,169)( 90,170)( 91,161)( 92,162)( 93,163)( 94,164)( 95,165)( 96,156)
( 97,157)( 98,158)( 99,159)(100,160);;
s2 := ( 1, 6)( 2, 10)( 3, 9)( 4, 8)( 5, 7)( 11, 21)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)( 43, 44)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)( 93, 94)
(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)(113,124)
(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)(129,133)
(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)(143,144)
(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)(163,174)
(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)(179,183)
(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)(193,194);;
s3 := ( 1, 2)( 3, 5)( 6, 7)( 8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)( 78, 80)
( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)( 98,100)
(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)(118,120)
(121,122)(123,125)(126,127)(128,130)(131,132)(133,135)(136,137)(138,140)
(141,142)(143,145)(146,147)(148,150)(151,152)(153,155)(156,157)(158,160)
(161,162)(163,165)(166,167)(168,170)(171,172)(173,175)(176,177)(178,180)
(181,182)(183,185)(186,187)(188,190)(191,192)(193,195)(196,197)(198,200);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(200)!( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)( 56, 81)( 57, 82)
( 58, 83)( 59, 84)( 60, 85)( 61, 86)( 62, 87)( 63, 88)( 64, 89)( 65, 90)
( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 96)( 72, 97)( 73, 98)
( 74, 99)( 75,100)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)
(107,157)(108,158)(109,159)(110,160)(111,161)(112,162)(113,163)(114,164)
(115,165)(116,166)(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)
(123,173)(124,174)(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)
(131,181)(132,182)(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)
(139,189)(140,190)(141,191)(142,192)(143,193)(144,194)(145,195)(146,196)
(147,197)(148,198)(149,199)(150,200);
s1 := Sym(200)!( 1,101)( 2,102)( 3,103)( 4,104)( 5,105)( 6,121)( 7,122)
( 8,123)( 9,124)( 10,125)( 11,116)( 12,117)( 13,118)( 14,119)( 15,120)
( 16,111)( 17,112)( 18,113)( 19,114)( 20,115)( 21,106)( 22,107)( 23,108)
( 24,109)( 25,110)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,146)
( 32,147)( 33,148)( 34,149)( 35,150)( 36,141)( 37,142)( 38,143)( 39,144)
( 40,145)( 41,136)( 42,137)( 43,138)( 44,139)( 45,140)( 46,131)( 47,132)
( 48,133)( 49,134)( 50,135)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)
( 56,196)( 57,197)( 58,198)( 59,199)( 60,200)( 61,191)( 62,192)( 63,193)
( 64,194)( 65,195)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,181)
( 72,182)( 73,183)( 74,184)( 75,185)( 76,151)( 77,152)( 78,153)( 79,154)
( 80,155)( 81,171)( 82,172)( 83,173)( 84,174)( 85,175)( 86,166)( 87,167)
( 88,168)( 89,169)( 90,170)( 91,161)( 92,162)( 93,163)( 94,164)( 95,165)
( 96,156)( 97,157)( 98,158)( 99,159)(100,160);
s2 := Sym(200)!( 1, 6)( 2, 10)( 3, 9)( 4, 8)( 5, 7)( 11, 21)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)
( 43, 44)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)
( 63, 74)( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)
( 93, 94)(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)
(113,124)(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)
(129,133)(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)
(143,144)(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)
(163,174)(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)
(179,183)(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)
(193,194);
s3 := Sym(200)!( 1, 2)( 3, 5)( 6, 7)( 8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)
( 78, 80)( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)
( 98,100)(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)
(118,120)(121,122)(123,125)(126,127)(128,130)(131,132)(133,135)(136,137)
(138,140)(141,142)(143,145)(146,147)(148,150)(151,152)(153,155)(156,157)
(158,160)(161,162)(163,165)(166,167)(168,170)(171,172)(173,175)(176,177)
(178,180)(181,182)(183,185)(186,187)(188,190)(191,192)(193,195)(196,197)
(198,200);
poly := sub<Sym(200)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope