Polytope of Type {8,2,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,10}*320
Tell me
if this polytope has a name.
Group : SmallGroup(320,1426)
Rank : 4
Schlafli Type : {8,2,10}
Number of vertices, edges, etc : 8, 8, 10, 10
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{8,2,10,2} of size 640
{8,2,10,4} of size 1280
{8,2,10,5} of size 1600
{8,2,10,6} of size 1920
{8,2,10,3} of size 1920
{8,2,10,3} of size 1920
{8,2,10,5} of size 1920
{8,2,10,5} of size 1920
Vertex Figure Of :
{2,8,2,10} of size 640
{4,8,2,10} of size 1280
{4,8,2,10} of size 1280
{6,8,2,10} of size 1920
{3,8,2,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,2,5}*160, {4,2,10}*160
4-fold quotients : {4,2,5}*80, {2,2,10}*80
5-fold quotients : {8,2,2}*64
8-fold quotients : {2,2,5}*40
10-fold quotients : {4,2,2}*32
20-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,2,20}*640, {8,4,10}*640a, {16,2,10}*640
3-fold covers : {24,2,10}*960, {8,6,10}*960, {8,2,30}*960
4-fold covers : {8,4,10}*1280a, {8,8,10}*1280b, {8,8,10}*1280c, {8,2,40}*1280, {8,4,20}*1280a, {16,4,10}*1280a, {16,4,10}*1280b, {16,2,20}*1280, {32,2,10}*1280
5-fold covers : {8,2,50}*1600, {40,2,10}*1600, {8,10,10}*1600a, {8,10,10}*1600c
6-fold covers : {8,4,30}*1920a, {8,12,10}*1920a, {24,4,10}*1920a, {8,2,60}*1920, {8,6,20}*1920, {24,2,20}*1920, {16,2,30}*1920, {16,6,10}*1920, {48,2,10}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(15,16)(17,18);;
s3 := ( 9,13)(10,11)(12,17)(14,15)(16,18);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(2,3)(4,5)(6,7);
s1 := Sym(18)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(18)!(11,12)(13,14)(15,16)(17,18);
s3 := Sym(18)!( 9,13)(10,11)(12,17)(14,15)(16,18);
poly := sub<Sym(18)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
Suggest a published reference
to this polytope