Polytope of Type {10,10,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,8}*1600b
if this polytope has a name.
Group : SmallGroup(1600,8167)
Rank : 4
Schlafli Type : {10,10,8}
Number of vertices, edges, etc : 10, 50, 40, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,4}*800b
   4-fold quotients : {10,10,2}*400b
   5-fold quotients : {2,10,8}*320
   8-fold quotients : {10,5,2}*200
   10-fold quotients : {2,10,4}*160
   20-fold quotients : {2,10,2}*80
   25-fold quotients : {2,2,8}*64
   40-fold quotients : {2,5,2}*40
   50-fold quotients : {2,2,4}*32
   100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 41)
( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)( 82, 97)
( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)( 90, 95)
(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)(113,118)
(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)
(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)(159,174)
(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)(182,197)
(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)(190,195);;
s1 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)( 43, 44)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)( 93, 94)
(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)(113,124)
(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)(129,133)
(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)(143,144)
(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)(163,174)
(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)(179,183)
(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)(193,194);;
s2 := (  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)( 57, 96)( 58,100)
( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)( 66, 87)
( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)( 74, 84)
( 75, 83)(101,152)(102,151)(103,155)(104,154)(105,153)(106,172)(107,171)
(108,175)(109,174)(110,173)(111,167)(112,166)(113,170)(114,169)(115,168)
(116,162)(117,161)(118,165)(119,164)(120,163)(121,157)(122,156)(123,160)
(124,159)(125,158)(126,177)(127,176)(128,180)(129,179)(130,178)(131,197)
(132,196)(133,200)(134,199)(135,198)(136,192)(137,191)(138,195)(139,194)
(140,193)(141,187)(142,186)(143,190)(144,189)(145,188)(146,182)(147,181)
(148,185)(149,184)(150,183);;
s3 := (  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)(  8,108)
(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)( 16,116)
( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)( 24,124)
( 25,125)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,131)( 32,132)
( 33,133)( 34,134)( 35,135)( 36,136)( 37,137)( 38,138)( 39,139)( 40,140)
( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,146)( 47,147)( 48,148)
( 49,149)( 50,150)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)( 56,181)
( 57,182)( 58,183)( 59,184)( 60,185)( 61,186)( 62,187)( 63,188)( 64,189)
( 65,190)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,196)( 72,197)
( 73,198)( 74,199)( 75,200)( 76,151)( 77,152)( 78,153)( 79,154)( 80,155)
( 81,156)( 82,157)( 83,158)( 84,159)( 85,160)( 86,161)( 87,162)( 88,163)
( 89,164)( 90,165)( 91,166)( 92,167)( 93,168)( 94,169)( 95,170)( 96,171)
( 97,172)( 98,173)( 99,174)(100,175);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(200)!(  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)
( 82, 97)( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)
( 90, 95)(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)
(113,118)(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)
(136,141)(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)
(159,174)(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)
(182,197)(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)
(190,195);
s1 := Sym(200)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)
( 43, 44)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)
( 63, 74)( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)
( 93, 94)(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)
(113,124)(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)
(129,133)(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)
(143,144)(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)
(163,174)(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)
(179,183)(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)
(193,194);
s2 := Sym(200)!(  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)( 57, 96)
( 58,100)( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)
( 66, 87)( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)
( 74, 84)( 75, 83)(101,152)(102,151)(103,155)(104,154)(105,153)(106,172)
(107,171)(108,175)(109,174)(110,173)(111,167)(112,166)(113,170)(114,169)
(115,168)(116,162)(117,161)(118,165)(119,164)(120,163)(121,157)(122,156)
(123,160)(124,159)(125,158)(126,177)(127,176)(128,180)(129,179)(130,178)
(131,197)(132,196)(133,200)(134,199)(135,198)(136,192)(137,191)(138,195)
(139,194)(140,193)(141,187)(142,186)(143,190)(144,189)(145,188)(146,182)
(147,181)(148,185)(149,184)(150,183);
s3 := Sym(200)!(  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)
(  8,108)(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)
( 16,116)( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)
( 24,124)( 25,125)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,131)
( 32,132)( 33,133)( 34,134)( 35,135)( 36,136)( 37,137)( 38,138)( 39,139)
( 40,140)( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,146)( 47,147)
( 48,148)( 49,149)( 50,150)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)
( 56,181)( 57,182)( 58,183)( 59,184)( 60,185)( 61,186)( 62,187)( 63,188)
( 64,189)( 65,190)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,196)
( 72,197)( 73,198)( 74,199)( 75,200)( 76,151)( 77,152)( 78,153)( 79,154)
( 80,155)( 81,156)( 82,157)( 83,158)( 84,159)( 85,160)( 86,161)( 87,162)
( 88,163)( 89,164)( 90,165)( 91,166)( 92,167)( 93,168)( 94,169)( 95,170)
( 96,171)( 97,172)( 98,173)( 99,174)(100,175);
poly := sub<Sym(200)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope