Polytope of Type {10,10,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,4}*800b
if this polytope has a name.
Group : SmallGroup(800,1134)
Rank : 4
Schlafli Type : {10,10,4}
Number of vertices, edges, etc : 10, 50, 20, 4
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,10,4,2} of size 1600
Vertex Figure Of :
   {2,10,10,4} of size 1600
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,2}*400b
   4-fold quotients : {10,5,2}*200
   5-fold quotients : {2,10,4}*160
   10-fold quotients : {2,10,2}*80
   20-fold quotients : {2,5,2}*40
   25-fold quotients : {2,2,4}*32
   50-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,20,4}*1600b, {10,10,8}*1600b, {20,10,4}*1600c
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)( 78, 79)
( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)( 98, 99);;
s1 := (  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)( 61, 67)
( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)( 82, 96)
( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)( 90, 93);;
s2 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)( 43, 44)
( 51, 81)( 52, 85)( 53, 84)( 54, 83)( 55, 82)( 56, 76)( 57, 80)( 58, 79)
( 59, 78)( 60, 77)( 61, 96)( 62,100)( 63, 99)( 64, 98)( 65, 97)( 66, 91)
( 67, 95)( 68, 94)( 69, 93)( 70, 92)( 71, 86)( 72, 90)( 73, 89)( 74, 88)
( 75, 87);;
s3 := (  1, 51)(  2, 52)(  3, 53)(  4, 54)(  5, 55)(  6, 56)(  7, 57)(  8, 58)
(  9, 59)( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)
( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)
( 25, 75)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)
( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)
( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)
( 49, 99)( 50,100);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(100)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)
( 78, 79)( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)
( 98, 99);
s1 := Sym(100)!(  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 52)( 53, 55)( 56, 72)( 57, 71)( 58, 75)( 59, 74)( 60, 73)
( 61, 67)( 62, 66)( 63, 70)( 64, 69)( 65, 68)( 76, 77)( 78, 80)( 81, 97)
( 82, 96)( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)
( 90, 93);
s2 := Sym(100)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)
( 43, 44)( 51, 81)( 52, 85)( 53, 84)( 54, 83)( 55, 82)( 56, 76)( 57, 80)
( 58, 79)( 59, 78)( 60, 77)( 61, 96)( 62,100)( 63, 99)( 64, 98)( 65, 97)
( 66, 91)( 67, 95)( 68, 94)( 69, 93)( 70, 92)( 71, 86)( 72, 90)( 73, 89)
( 74, 88)( 75, 87);
s3 := Sym(100)!(  1, 51)(  2, 52)(  3, 53)(  4, 54)(  5, 55)(  6, 56)(  7, 57)
(  8, 58)(  9, 59)( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)
( 16, 66)( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)
( 24, 74)( 25, 75)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)
( 32, 82)( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)
( 40, 90)( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)
( 48, 98)( 49, 99)( 50,100);
poly := sub<Sym(100)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope