include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,30}*1620c
if this polytope has a name.
Group : SmallGroup(1620,140)
Rank : 3
Schlafli Type : {18,30}
Number of vertices, edges, etc : 27, 405, 45
Order of s0s1s2 : 15
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,30}*540
5-fold quotients : {18,6}*324c
15-fold quotients : {6,6}*108
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 46, 92)( 47, 91)( 48, 93)( 49, 98)
( 50, 97)( 51, 99)( 52, 95)( 53, 94)( 54, 96)( 55,101)( 56,100)( 57,102)
( 58,107)( 59,106)( 60,108)( 61,104)( 62,103)( 63,105)( 64,110)( 65,109)
( 66,111)( 67,116)( 68,115)( 69,117)( 70,113)( 71,112)( 72,114)( 73,119)
( 74,118)( 75,120)( 76,125)( 77,124)( 78,126)( 79,122)( 80,121)( 81,123)
( 82,128)( 83,127)( 84,129)( 85,134)( 86,133)( 87,135)( 88,131)( 89,130)
( 90,132);;
s1 := ( 1, 46)( 2, 48)( 3, 47)( 4, 49)( 5, 51)( 6, 50)( 7, 52)( 8, 54)
( 9, 53)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)( 16, 88)
( 17, 90)( 18, 89)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)( 24, 77)
( 25, 79)( 26, 81)( 27, 80)( 28, 64)( 29, 66)( 30, 65)( 31, 67)( 32, 69)
( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)( 39, 56)( 40, 58)
( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 91, 92)( 94, 95)( 97, 98)
(100,128)(101,127)(102,129)(103,131)(104,130)(105,132)(106,134)(107,133)
(108,135)(109,119)(110,118)(111,120)(112,122)(113,121)(114,123)(115,125)
(116,124)(117,126);;
s2 := ( 1, 10)( 2, 11)( 3, 12)( 4, 18)( 5, 16)( 6, 17)( 7, 14)( 8, 15)
( 9, 13)( 19, 37)( 20, 38)( 21, 39)( 22, 45)( 23, 43)( 24, 44)( 25, 41)
( 26, 42)( 27, 40)( 31, 36)( 32, 34)( 33, 35)( 46, 60)( 47, 58)( 48, 59)
( 49, 56)( 50, 57)( 51, 55)( 52, 61)( 53, 62)( 54, 63)( 64, 87)( 65, 85)
( 66, 86)( 67, 83)( 68, 84)( 69, 82)( 70, 88)( 71, 89)( 72, 90)( 73, 78)
( 74, 76)( 75, 77)( 91,107)( 92,108)( 93,106)( 94,103)( 95,104)( 96,105)
( 97,102)( 98,100)( 99,101)(109,134)(110,135)(111,133)(112,130)(113,131)
(114,132)(115,129)(116,127)(117,128)(118,125)(119,126)(120,124);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(135)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 46, 92)( 47, 91)( 48, 93)
( 49, 98)( 50, 97)( 51, 99)( 52, 95)( 53, 94)( 54, 96)( 55,101)( 56,100)
( 57,102)( 58,107)( 59,106)( 60,108)( 61,104)( 62,103)( 63,105)( 64,110)
( 65,109)( 66,111)( 67,116)( 68,115)( 69,117)( 70,113)( 71,112)( 72,114)
( 73,119)( 74,118)( 75,120)( 76,125)( 77,124)( 78,126)( 79,122)( 80,121)
( 81,123)( 82,128)( 83,127)( 84,129)( 85,134)( 86,133)( 87,135)( 88,131)
( 89,130)( 90,132);
s1 := Sym(135)!( 1, 46)( 2, 48)( 3, 47)( 4, 49)( 5, 51)( 6, 50)( 7, 52)
( 8, 54)( 9, 53)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)
( 16, 88)( 17, 90)( 18, 89)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)
( 24, 77)( 25, 79)( 26, 81)( 27, 80)( 28, 64)( 29, 66)( 30, 65)( 31, 67)
( 32, 69)( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)( 39, 56)
( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 91, 92)( 94, 95)
( 97, 98)(100,128)(101,127)(102,129)(103,131)(104,130)(105,132)(106,134)
(107,133)(108,135)(109,119)(110,118)(111,120)(112,122)(113,121)(114,123)
(115,125)(116,124)(117,126);
s2 := Sym(135)!( 1, 10)( 2, 11)( 3, 12)( 4, 18)( 5, 16)( 6, 17)( 7, 14)
( 8, 15)( 9, 13)( 19, 37)( 20, 38)( 21, 39)( 22, 45)( 23, 43)( 24, 44)
( 25, 41)( 26, 42)( 27, 40)( 31, 36)( 32, 34)( 33, 35)( 46, 60)( 47, 58)
( 48, 59)( 49, 56)( 50, 57)( 51, 55)( 52, 61)( 53, 62)( 54, 63)( 64, 87)
( 65, 85)( 66, 86)( 67, 83)( 68, 84)( 69, 82)( 70, 88)( 71, 89)( 72, 90)
( 73, 78)( 74, 76)( 75, 77)( 91,107)( 92,108)( 93,106)( 94,103)( 95,104)
( 96,105)( 97,102)( 98,100)( 99,101)(109,134)(110,135)(111,133)(112,130)
(113,131)(114,132)(115,129)(116,127)(117,128)(118,125)(119,126)(120,124);
poly := sub<Sym(135)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope