Polytope of Type {30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30}*60
Also Known As : 30-gon, {30}. if this polytope has another name.
Group : SmallGroup(60,12)
Rank : 2
Schlafli Type : {30}
Number of vertices, edges, etc : 30, 30
Order of s0s1 : 30
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {30,2} of size 120
   {30,4} of size 240
   {30,4} of size 240
   {30,4} of size 240
   {30,6} of size 360
   {30,6} of size 360
   {30,6} of size 360
   {30,8} of size 480
   {30,6} of size 480
   {30,4} of size 480
   {30,6} of size 540
   {30,10} of size 600
   {30,10} of size 600
   {30,10} of size 600
   {30,12} of size 720
   {30,12} of size 720
   {30,12} of size 720
   {30,3} of size 720
   {30,6} of size 720
   {30,6} of size 720
   {30,10} of size 720
   {30,10} of size 720
   {30,4} of size 720
   {30,12} of size 720
   {30,14} of size 840
   {30,3} of size 900
   {30,6} of size 900
   {30,15} of size 900
   {30,16} of size 960
   {30,4} of size 960
   {30,8} of size 960
   {30,12} of size 960
   {30,6} of size 960
   {30,12} of size 960
   {30,4} of size 960
   {30,8} of size 960
   {30,8} of size 960
   {30,4} of size 960
   {30,4} of size 960
   {30,18} of size 1080
   {30,6} of size 1080
   {30,18} of size 1080
   {30,6} of size 1080
   {30,6} of size 1080
   {30,6} of size 1080
   {30,20} of size 1200
   {30,20} of size 1200
   {30,20} of size 1200
   {30,4} of size 1200
   {30,5} of size 1200
   {30,6} of size 1200
   {30,10} of size 1200
   {30,5} of size 1200
   {30,10} of size 1200
   {30,10} of size 1200
   {30,4} of size 1200
   {30,15} of size 1200
   {30,20} of size 1200
   {30,22} of size 1320
   {30,24} of size 1440
   {30,24} of size 1440
   {30,24} of size 1440
   {30,6} of size 1440
   {30,6} of size 1440
   {30,8} of size 1440
   {30,4} of size 1440
   {30,6} of size 1440
   {30,6} of size 1440
   {30,6} of size 1440
   {30,6} of size 1440
   {30,10} of size 1440
   {30,6} of size 1440
   {30,12} of size 1440
   {30,12} of size 1440
   {30,6} of size 1440
   {30,3} of size 1500
   {30,10} of size 1500
   {30,10} of size 1500
   {30,10} of size 1500
   {30,10} of size 1500
   {30,10} of size 1500
   {30,10} of size 1500
   {30,26} of size 1560
   {30,18} of size 1620
   {30,6} of size 1620
   {30,6} of size 1620
   {30,18} of size 1620
   {30,18} of size 1620
   {30,28} of size 1680
   {30,28} of size 1680
   {30,6} of size 1800
   {30,6} of size 1800
   {30,6} of size 1800
   {30,6} of size 1800
   {30,4} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,32} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,6} of size 1920
   {30,6} of size 1920
   {30,6} of size 1920
   {30,24} of size 1920
   {30,12} of size 1920
   {30,24} of size 1920
   {30,4} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,4} of size 1920
   {30,10} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,8} of size 1920
   {30,4} of size 1920
   {30,10} of size 1920
   {30,4} of size 1920
Vertex Figure Of :
   {2,30} of size 120
   {4,30} of size 240
   {4,30} of size 240
   {4,30} of size 240
   {6,30} of size 360
   {6,30} of size 360
   {6,30} of size 360
   {8,30} of size 480
   {6,30} of size 480
   {4,30} of size 480
   {6,30} of size 540
   {10,30} of size 600
   {10,30} of size 600
   {10,30} of size 600
   {12,30} of size 720
   {12,30} of size 720
   {12,30} of size 720
   {3,30} of size 720
   {6,30} of size 720
   {6,30} of size 720
   {10,30} of size 720
   {10,30} of size 720
   {4,30} of size 720
   {12,30} of size 720
   {14,30} of size 840
   {3,30} of size 900
   {6,30} of size 900
   {15,30} of size 900
   {16,30} of size 960
   {4,30} of size 960
   {8,30} of size 960
   {12,30} of size 960
   {6,30} of size 960
   {12,30} of size 960
   {4,30} of size 960
   {8,30} of size 960
   {8,30} of size 960
   {4,30} of size 960
   {4,30} of size 960
   {18,30} of size 1080
   {6,30} of size 1080
   {18,30} of size 1080
   {6,30} of size 1080
   {6,30} of size 1080
   {6,30} of size 1080
   {20,30} of size 1200
   {20,30} of size 1200
   {20,30} of size 1200
   {4,30} of size 1200
   {5,30} of size 1200
   {6,30} of size 1200
   {10,30} of size 1200
   {5,30} of size 1200
   {10,30} of size 1200
   {10,30} of size 1200
   {4,30} of size 1200
   {15,30} of size 1200
   {20,30} of size 1200
   {22,30} of size 1320
   {24,30} of size 1440
   {24,30} of size 1440
   {24,30} of size 1440
   {6,30} of size 1440
   {6,30} of size 1440
   {8,30} of size 1440
   {4,30} of size 1440
   {6,30} of size 1440
   {6,30} of size 1440
   {6,30} of size 1440
   {6,30} of size 1440
   {10,30} of size 1440
   {6,30} of size 1440
   {12,30} of size 1440
   {12,30} of size 1440
   {6,30} of size 1440
   {3,30} of size 1500
   {10,30} of size 1500
   {10,30} of size 1500
   {10,30} of size 1500
   {10,30} of size 1500
   {10,30} of size 1500
   {10,30} of size 1500
   {26,30} of size 1560
   {18,30} of size 1620
   {6,30} of size 1620
   {6,30} of size 1620
   {18,30} of size 1620
   {18,30} of size 1620
   {28,30} of size 1680
   {28,30} of size 1680
   {6,30} of size 1800
   {6,30} of size 1800
   {6,30} of size 1800
   {6,30} of size 1800
   {4,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {30,30} of size 1800
   {32,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {6,30} of size 1920
   {6,30} of size 1920
   {6,30} of size 1920
   {24,30} of size 1920
   {12,30} of size 1920
   {24,30} of size 1920
   {4,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {4,30} of size 1920
   {10,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {8,30} of size 1920
   {4,30} of size 1920
   {10,30} of size 1920
   {4,30} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15}*30
   3-fold quotients : {10}*20
   5-fold quotients : {6}*12
   6-fold quotients : {5}*10
   10-fold quotients : {3}*6
   15-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {60}*120
   3-fold covers : {90}*180
   4-fold covers : {120}*240
   5-fold covers : {150}*300
   6-fold covers : {180}*360
   7-fold covers : {210}*420
   8-fold covers : {240}*480
   9-fold covers : {270}*540
   10-fold covers : {300}*600
   11-fold covers : {330}*660
   12-fold covers : {360}*720
   13-fold covers : {390}*780
   14-fold covers : {420}*840
   15-fold covers : {450}*900
   16-fold covers : {480}*960
   17-fold covers : {510}*1020
   18-fold covers : {540}*1080
   19-fold covers : {570}*1140
   20-fold covers : {600}*1200
   21-fold covers : {630}*1260
   22-fold covers : {660}*1320
   23-fold covers : {690}*1380
   24-fold covers : {720}*1440
   25-fold covers : {750}*1500
   26-fold covers : {780}*1560
   27-fold covers : {810}*1620
   28-fold covers : {840}*1680
   29-fold covers : {870}*1740
   30-fold covers : {900}*1800
   31-fold covers : {930}*1860
   32-fold covers : {960}*1920
   33-fold covers : {990}*1980
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)(21,22)
(23,26)(24,25)(27,30)(28,29);;
s1 := ( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)(14,29)
(15,18)(16,28)(20,25)(22,24)(26,30);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(30)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)
(21,22)(23,26)(24,25)(27,30)(28,29);
s1 := Sym(30)!( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)
(14,29)(15,18)(16,28)(20,25)(22,24)(26,30);
poly := sub<Sym(30)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope