Polytope of Type {3,6,34}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,34}*1632
Also Known As : {{3,6}4,{6,34|2}}. if this polytope has another name.
Group : SmallGroup(1632,1195)
Rank : 4
Schlafli Type : {3,6,34}
Number of vertices, edges, etc : 4, 12, 136, 34
Order of s0s1s2s3 : 68
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   17-fold quotients : {3,6,2}*96
   34-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)( 63, 64)
( 67, 68)( 69,137)( 70,138)( 71,140)( 72,139)( 73,141)( 74,142)( 75,144)
( 76,143)( 77,145)( 78,146)( 79,148)( 80,147)( 81,149)( 82,150)( 83,152)
( 84,151)( 85,153)( 86,154)( 87,156)( 88,155)( 89,157)( 90,158)( 91,160)
( 92,159)( 93,161)( 94,162)( 95,164)( 96,163)( 97,165)( 98,166)( 99,168)
(100,167)(101,169)(102,170)(103,172)(104,171)(105,173)(106,174)(107,176)
(108,175)(109,177)(110,178)(111,180)(112,179)(113,181)(114,182)(115,184)
(116,183)(117,185)(118,186)(119,188)(120,187)(121,189)(122,190)(123,192)
(124,191)(125,193)(126,194)(127,196)(128,195)(129,197)(130,198)(131,200)
(132,199)(133,201)(134,202)(135,204)(136,203)(207,208)(211,212)(215,216)
(219,220)(223,224)(227,228)(231,232)(235,236)(239,240)(243,244)(247,248)
(251,252)(255,256)(259,260)(263,264)(267,268)(271,272)(273,341)(274,342)
(275,344)(276,343)(277,345)(278,346)(279,348)(280,347)(281,349)(282,350)
(283,352)(284,351)(285,353)(286,354)(287,356)(288,355)(289,357)(290,358)
(291,360)(292,359)(293,361)(294,362)(295,364)(296,363)(297,365)(298,366)
(299,368)(300,367)(301,369)(302,370)(303,372)(304,371)(305,373)(306,374)
(307,376)(308,375)(309,377)(310,378)(311,380)(312,379)(313,381)(314,382)
(315,384)(316,383)(317,385)(318,386)(319,388)(320,387)(321,389)(322,390)
(323,392)(324,391)(325,393)(326,394)(327,396)(328,395)(329,397)(330,398)
(331,400)(332,399)(333,401)(334,402)(335,404)(336,403)(337,405)(338,406)
(339,408)(340,407);;
s1 := (  1, 69)(  2, 72)(  3, 71)(  4, 70)(  5, 73)(  6, 76)(  7, 75)(  8, 74)
(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 81)( 14, 84)( 15, 83)( 16, 82)
( 17, 85)( 18, 88)( 19, 87)( 20, 86)( 21, 89)( 22, 92)( 23, 91)( 24, 90)
( 25, 93)( 26, 96)( 27, 95)( 28, 94)( 29, 97)( 30,100)( 31, 99)( 32, 98)
( 33,101)( 34,104)( 35,103)( 36,102)( 37,105)( 38,108)( 39,107)( 40,106)
( 41,109)( 42,112)( 43,111)( 44,110)( 45,113)( 46,116)( 47,115)( 48,114)
( 49,117)( 50,120)( 51,119)( 52,118)( 53,121)( 54,124)( 55,123)( 56,122)
( 57,125)( 58,128)( 59,127)( 60,126)( 61,129)( 62,132)( 63,131)( 64,130)
( 65,133)( 66,136)( 67,135)( 68,134)(138,140)(142,144)(146,148)(150,152)
(154,156)(158,160)(162,164)(166,168)(170,172)(174,176)(178,180)(182,184)
(186,188)(190,192)(194,196)(198,200)(202,204)(205,273)(206,276)(207,275)
(208,274)(209,277)(210,280)(211,279)(212,278)(213,281)(214,284)(215,283)
(216,282)(217,285)(218,288)(219,287)(220,286)(221,289)(222,292)(223,291)
(224,290)(225,293)(226,296)(227,295)(228,294)(229,297)(230,300)(231,299)
(232,298)(233,301)(234,304)(235,303)(236,302)(237,305)(238,308)(239,307)
(240,306)(241,309)(242,312)(243,311)(244,310)(245,313)(246,316)(247,315)
(248,314)(249,317)(250,320)(251,319)(252,318)(253,321)(254,324)(255,323)
(256,322)(257,325)(258,328)(259,327)(260,326)(261,329)(262,332)(263,331)
(264,330)(265,333)(266,336)(267,335)(268,334)(269,337)(270,340)(271,339)
(272,338)(342,344)(346,348)(350,352)(354,356)(358,360)(362,364)(366,368)
(370,372)(374,376)(378,380)(382,384)(386,388)(390,392)(394,396)(398,400)
(402,404)(406,408);;
s2 := (  1,  2)(  5, 66)(  6, 65)(  7, 67)(  8, 68)(  9, 62)( 10, 61)( 11, 63)
( 12, 64)( 13, 58)( 14, 57)( 15, 59)( 16, 60)( 17, 54)( 18, 53)( 19, 55)
( 20, 56)( 21, 50)( 22, 49)( 23, 51)( 24, 52)( 25, 46)( 26, 45)( 27, 47)
( 28, 48)( 29, 42)( 30, 41)( 31, 43)( 32, 44)( 33, 38)( 34, 37)( 35, 39)
( 36, 40)( 69,138)( 70,137)( 71,139)( 72,140)( 73,202)( 74,201)( 75,203)
( 76,204)( 77,198)( 78,197)( 79,199)( 80,200)( 81,194)( 82,193)( 83,195)
( 84,196)( 85,190)( 86,189)( 87,191)( 88,192)( 89,186)( 90,185)( 91,187)
( 92,188)( 93,182)( 94,181)( 95,183)( 96,184)( 97,178)( 98,177)( 99,179)
(100,180)(101,174)(102,173)(103,175)(104,176)(105,170)(106,169)(107,171)
(108,172)(109,166)(110,165)(111,167)(112,168)(113,162)(114,161)(115,163)
(116,164)(117,158)(118,157)(119,159)(120,160)(121,154)(122,153)(123,155)
(124,156)(125,150)(126,149)(127,151)(128,152)(129,146)(130,145)(131,147)
(132,148)(133,142)(134,141)(135,143)(136,144)(205,206)(209,270)(210,269)
(211,271)(212,272)(213,266)(214,265)(215,267)(216,268)(217,262)(218,261)
(219,263)(220,264)(221,258)(222,257)(223,259)(224,260)(225,254)(226,253)
(227,255)(228,256)(229,250)(230,249)(231,251)(232,252)(233,246)(234,245)
(235,247)(236,248)(237,242)(238,241)(239,243)(240,244)(273,342)(274,341)
(275,343)(276,344)(277,406)(278,405)(279,407)(280,408)(281,402)(282,401)
(283,403)(284,404)(285,398)(286,397)(287,399)(288,400)(289,394)(290,393)
(291,395)(292,396)(293,390)(294,389)(295,391)(296,392)(297,386)(298,385)
(299,387)(300,388)(301,382)(302,381)(303,383)(304,384)(305,378)(306,377)
(307,379)(308,380)(309,374)(310,373)(311,375)(312,376)(313,370)(314,369)
(315,371)(316,372)(317,366)(318,365)(319,367)(320,368)(321,362)(322,361)
(323,363)(324,364)(325,358)(326,357)(327,359)(328,360)(329,354)(330,353)
(331,355)(332,356)(333,350)(334,349)(335,351)(336,352)(337,346)(338,345)
(339,347)(340,348);;
s3 := (  1,209)(  2,210)(  3,211)(  4,212)(  5,205)(  6,206)(  7,207)(  8,208)
(  9,269)( 10,270)( 11,271)( 12,272)( 13,265)( 14,266)( 15,267)( 16,268)
( 17,261)( 18,262)( 19,263)( 20,264)( 21,257)( 22,258)( 23,259)( 24,260)
( 25,253)( 26,254)( 27,255)( 28,256)( 29,249)( 30,250)( 31,251)( 32,252)
( 33,245)( 34,246)( 35,247)( 36,248)( 37,241)( 38,242)( 39,243)( 40,244)
( 41,237)( 42,238)( 43,239)( 44,240)( 45,233)( 46,234)( 47,235)( 48,236)
( 49,229)( 50,230)( 51,231)( 52,232)( 53,225)( 54,226)( 55,227)( 56,228)
( 57,221)( 58,222)( 59,223)( 60,224)( 61,217)( 62,218)( 63,219)( 64,220)
( 65,213)( 66,214)( 67,215)( 68,216)( 69,277)( 70,278)( 71,279)( 72,280)
( 73,273)( 74,274)( 75,275)( 76,276)( 77,337)( 78,338)( 79,339)( 80,340)
( 81,333)( 82,334)( 83,335)( 84,336)( 85,329)( 86,330)( 87,331)( 88,332)
( 89,325)( 90,326)( 91,327)( 92,328)( 93,321)( 94,322)( 95,323)( 96,324)
( 97,317)( 98,318)( 99,319)(100,320)(101,313)(102,314)(103,315)(104,316)
(105,309)(106,310)(107,311)(108,312)(109,305)(110,306)(111,307)(112,308)
(113,301)(114,302)(115,303)(116,304)(117,297)(118,298)(119,299)(120,300)
(121,293)(122,294)(123,295)(124,296)(125,289)(126,290)(127,291)(128,292)
(129,285)(130,286)(131,287)(132,288)(133,281)(134,282)(135,283)(136,284)
(137,345)(138,346)(139,347)(140,348)(141,341)(142,342)(143,343)(144,344)
(145,405)(146,406)(147,407)(148,408)(149,401)(150,402)(151,403)(152,404)
(153,397)(154,398)(155,399)(156,400)(157,393)(158,394)(159,395)(160,396)
(161,389)(162,390)(163,391)(164,392)(165,385)(166,386)(167,387)(168,388)
(169,381)(170,382)(171,383)(172,384)(173,377)(174,378)(175,379)(176,380)
(177,373)(178,374)(179,375)(180,376)(181,369)(182,370)(183,371)(184,372)
(185,365)(186,366)(187,367)(188,368)(189,361)(190,362)(191,363)(192,364)
(193,357)(194,358)(195,359)(196,360)(197,353)(198,354)(199,355)(200,356)
(201,349)(202,350)(203,351)(204,352);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(408)!(  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)
( 63, 64)( 67, 68)( 69,137)( 70,138)( 71,140)( 72,139)( 73,141)( 74,142)
( 75,144)( 76,143)( 77,145)( 78,146)( 79,148)( 80,147)( 81,149)( 82,150)
( 83,152)( 84,151)( 85,153)( 86,154)( 87,156)( 88,155)( 89,157)( 90,158)
( 91,160)( 92,159)( 93,161)( 94,162)( 95,164)( 96,163)( 97,165)( 98,166)
( 99,168)(100,167)(101,169)(102,170)(103,172)(104,171)(105,173)(106,174)
(107,176)(108,175)(109,177)(110,178)(111,180)(112,179)(113,181)(114,182)
(115,184)(116,183)(117,185)(118,186)(119,188)(120,187)(121,189)(122,190)
(123,192)(124,191)(125,193)(126,194)(127,196)(128,195)(129,197)(130,198)
(131,200)(132,199)(133,201)(134,202)(135,204)(136,203)(207,208)(211,212)
(215,216)(219,220)(223,224)(227,228)(231,232)(235,236)(239,240)(243,244)
(247,248)(251,252)(255,256)(259,260)(263,264)(267,268)(271,272)(273,341)
(274,342)(275,344)(276,343)(277,345)(278,346)(279,348)(280,347)(281,349)
(282,350)(283,352)(284,351)(285,353)(286,354)(287,356)(288,355)(289,357)
(290,358)(291,360)(292,359)(293,361)(294,362)(295,364)(296,363)(297,365)
(298,366)(299,368)(300,367)(301,369)(302,370)(303,372)(304,371)(305,373)
(306,374)(307,376)(308,375)(309,377)(310,378)(311,380)(312,379)(313,381)
(314,382)(315,384)(316,383)(317,385)(318,386)(319,388)(320,387)(321,389)
(322,390)(323,392)(324,391)(325,393)(326,394)(327,396)(328,395)(329,397)
(330,398)(331,400)(332,399)(333,401)(334,402)(335,404)(336,403)(337,405)
(338,406)(339,408)(340,407);
s1 := Sym(408)!(  1, 69)(  2, 72)(  3, 71)(  4, 70)(  5, 73)(  6, 76)(  7, 75)
(  8, 74)(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 81)( 14, 84)( 15, 83)
( 16, 82)( 17, 85)( 18, 88)( 19, 87)( 20, 86)( 21, 89)( 22, 92)( 23, 91)
( 24, 90)( 25, 93)( 26, 96)( 27, 95)( 28, 94)( 29, 97)( 30,100)( 31, 99)
( 32, 98)( 33,101)( 34,104)( 35,103)( 36,102)( 37,105)( 38,108)( 39,107)
( 40,106)( 41,109)( 42,112)( 43,111)( 44,110)( 45,113)( 46,116)( 47,115)
( 48,114)( 49,117)( 50,120)( 51,119)( 52,118)( 53,121)( 54,124)( 55,123)
( 56,122)( 57,125)( 58,128)( 59,127)( 60,126)( 61,129)( 62,132)( 63,131)
( 64,130)( 65,133)( 66,136)( 67,135)( 68,134)(138,140)(142,144)(146,148)
(150,152)(154,156)(158,160)(162,164)(166,168)(170,172)(174,176)(178,180)
(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)(205,273)(206,276)
(207,275)(208,274)(209,277)(210,280)(211,279)(212,278)(213,281)(214,284)
(215,283)(216,282)(217,285)(218,288)(219,287)(220,286)(221,289)(222,292)
(223,291)(224,290)(225,293)(226,296)(227,295)(228,294)(229,297)(230,300)
(231,299)(232,298)(233,301)(234,304)(235,303)(236,302)(237,305)(238,308)
(239,307)(240,306)(241,309)(242,312)(243,311)(244,310)(245,313)(246,316)
(247,315)(248,314)(249,317)(250,320)(251,319)(252,318)(253,321)(254,324)
(255,323)(256,322)(257,325)(258,328)(259,327)(260,326)(261,329)(262,332)
(263,331)(264,330)(265,333)(266,336)(267,335)(268,334)(269,337)(270,340)
(271,339)(272,338)(342,344)(346,348)(350,352)(354,356)(358,360)(362,364)
(366,368)(370,372)(374,376)(378,380)(382,384)(386,388)(390,392)(394,396)
(398,400)(402,404)(406,408);
s2 := Sym(408)!(  1,  2)(  5, 66)(  6, 65)(  7, 67)(  8, 68)(  9, 62)( 10, 61)
( 11, 63)( 12, 64)( 13, 58)( 14, 57)( 15, 59)( 16, 60)( 17, 54)( 18, 53)
( 19, 55)( 20, 56)( 21, 50)( 22, 49)( 23, 51)( 24, 52)( 25, 46)( 26, 45)
( 27, 47)( 28, 48)( 29, 42)( 30, 41)( 31, 43)( 32, 44)( 33, 38)( 34, 37)
( 35, 39)( 36, 40)( 69,138)( 70,137)( 71,139)( 72,140)( 73,202)( 74,201)
( 75,203)( 76,204)( 77,198)( 78,197)( 79,199)( 80,200)( 81,194)( 82,193)
( 83,195)( 84,196)( 85,190)( 86,189)( 87,191)( 88,192)( 89,186)( 90,185)
( 91,187)( 92,188)( 93,182)( 94,181)( 95,183)( 96,184)( 97,178)( 98,177)
( 99,179)(100,180)(101,174)(102,173)(103,175)(104,176)(105,170)(106,169)
(107,171)(108,172)(109,166)(110,165)(111,167)(112,168)(113,162)(114,161)
(115,163)(116,164)(117,158)(118,157)(119,159)(120,160)(121,154)(122,153)
(123,155)(124,156)(125,150)(126,149)(127,151)(128,152)(129,146)(130,145)
(131,147)(132,148)(133,142)(134,141)(135,143)(136,144)(205,206)(209,270)
(210,269)(211,271)(212,272)(213,266)(214,265)(215,267)(216,268)(217,262)
(218,261)(219,263)(220,264)(221,258)(222,257)(223,259)(224,260)(225,254)
(226,253)(227,255)(228,256)(229,250)(230,249)(231,251)(232,252)(233,246)
(234,245)(235,247)(236,248)(237,242)(238,241)(239,243)(240,244)(273,342)
(274,341)(275,343)(276,344)(277,406)(278,405)(279,407)(280,408)(281,402)
(282,401)(283,403)(284,404)(285,398)(286,397)(287,399)(288,400)(289,394)
(290,393)(291,395)(292,396)(293,390)(294,389)(295,391)(296,392)(297,386)
(298,385)(299,387)(300,388)(301,382)(302,381)(303,383)(304,384)(305,378)
(306,377)(307,379)(308,380)(309,374)(310,373)(311,375)(312,376)(313,370)
(314,369)(315,371)(316,372)(317,366)(318,365)(319,367)(320,368)(321,362)
(322,361)(323,363)(324,364)(325,358)(326,357)(327,359)(328,360)(329,354)
(330,353)(331,355)(332,356)(333,350)(334,349)(335,351)(336,352)(337,346)
(338,345)(339,347)(340,348);
s3 := Sym(408)!(  1,209)(  2,210)(  3,211)(  4,212)(  5,205)(  6,206)(  7,207)
(  8,208)(  9,269)( 10,270)( 11,271)( 12,272)( 13,265)( 14,266)( 15,267)
( 16,268)( 17,261)( 18,262)( 19,263)( 20,264)( 21,257)( 22,258)( 23,259)
( 24,260)( 25,253)( 26,254)( 27,255)( 28,256)( 29,249)( 30,250)( 31,251)
( 32,252)( 33,245)( 34,246)( 35,247)( 36,248)( 37,241)( 38,242)( 39,243)
( 40,244)( 41,237)( 42,238)( 43,239)( 44,240)( 45,233)( 46,234)( 47,235)
( 48,236)( 49,229)( 50,230)( 51,231)( 52,232)( 53,225)( 54,226)( 55,227)
( 56,228)( 57,221)( 58,222)( 59,223)( 60,224)( 61,217)( 62,218)( 63,219)
( 64,220)( 65,213)( 66,214)( 67,215)( 68,216)( 69,277)( 70,278)( 71,279)
( 72,280)( 73,273)( 74,274)( 75,275)( 76,276)( 77,337)( 78,338)( 79,339)
( 80,340)( 81,333)( 82,334)( 83,335)( 84,336)( 85,329)( 86,330)( 87,331)
( 88,332)( 89,325)( 90,326)( 91,327)( 92,328)( 93,321)( 94,322)( 95,323)
( 96,324)( 97,317)( 98,318)( 99,319)(100,320)(101,313)(102,314)(103,315)
(104,316)(105,309)(106,310)(107,311)(108,312)(109,305)(110,306)(111,307)
(112,308)(113,301)(114,302)(115,303)(116,304)(117,297)(118,298)(119,299)
(120,300)(121,293)(122,294)(123,295)(124,296)(125,289)(126,290)(127,291)
(128,292)(129,285)(130,286)(131,287)(132,288)(133,281)(134,282)(135,283)
(136,284)(137,345)(138,346)(139,347)(140,348)(141,341)(142,342)(143,343)
(144,344)(145,405)(146,406)(147,407)(148,408)(149,401)(150,402)(151,403)
(152,404)(153,397)(154,398)(155,399)(156,400)(157,393)(158,394)(159,395)
(160,396)(161,389)(162,390)(163,391)(164,392)(165,385)(166,386)(167,387)
(168,388)(169,381)(170,382)(171,383)(172,384)(173,377)(174,378)(175,379)
(176,380)(177,373)(178,374)(179,375)(180,376)(181,369)(182,370)(183,371)
(184,372)(185,365)(186,366)(187,367)(188,368)(189,361)(190,362)(191,363)
(192,364)(193,357)(194,358)(195,359)(196,360)(197,353)(198,354)(199,355)
(200,356)(201,349)(202,350)(203,351)(204,352);
poly := sub<Sym(408)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope