Polytope of Type {34,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {34,6,3}*1632
Also Known As : {{34,6|2},{6,3}4}. if this polytope has another name.
Group : SmallGroup(1632,1195)
Rank : 4
Schlafli Type : {34,6,3}
Number of vertices, edges, etc : 34, 136, 12, 4
Order of s0s1s2s3 : 68
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   17-fold quotients : {2,6,3}*96
   34-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5, 65)(  6, 66)(  7, 67)(  8, 68)(  9, 61)( 10, 62)( 11, 63)( 12, 64)
( 13, 57)( 14, 58)( 15, 59)( 16, 60)( 17, 53)( 18, 54)( 19, 55)( 20, 56)
( 21, 49)( 22, 50)( 23, 51)( 24, 52)( 25, 45)( 26, 46)( 27, 47)( 28, 48)
( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 33, 37)( 34, 38)( 35, 39)( 36, 40)
( 73,133)( 74,134)( 75,135)( 76,136)( 77,129)( 78,130)( 79,131)( 80,132)
( 81,125)( 82,126)( 83,127)( 84,128)( 85,121)( 86,122)( 87,123)( 88,124)
( 89,117)( 90,118)( 91,119)( 92,120)( 93,113)( 94,114)( 95,115)( 96,116)
( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)(104,108)
(141,201)(142,202)(143,203)(144,204)(145,197)(146,198)(147,199)(148,200)
(149,193)(150,194)(151,195)(152,196)(153,189)(154,190)(155,191)(156,192)
(157,185)(158,186)(159,187)(160,188)(161,181)(162,182)(163,183)(164,184)
(165,177)(166,178)(167,179)(168,180)(169,173)(170,174)(171,175)(172,176)
(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)(216,268)
(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)(224,260)
(225,253)(226,254)(227,255)(228,256)(229,249)(230,250)(231,251)(232,252)
(233,245)(234,246)(235,247)(236,248)(237,241)(238,242)(239,243)(240,244)
(277,337)(278,338)(279,339)(280,340)(281,333)(282,334)(283,335)(284,336)
(285,329)(286,330)(287,331)(288,332)(289,325)(290,326)(291,327)(292,328)
(293,321)(294,322)(295,323)(296,324)(297,317)(298,318)(299,319)(300,320)
(301,313)(302,314)(303,315)(304,316)(305,309)(306,310)(307,311)(308,312)
(345,405)(346,406)(347,407)(348,408)(349,401)(350,402)(351,403)(352,404)
(353,397)(354,398)(355,399)(356,400)(357,393)(358,394)(359,395)(360,396)
(361,389)(362,390)(363,391)(364,392)(365,385)(366,386)(367,387)(368,388)
(369,381)(370,382)(371,383)(372,384)(373,377)(374,378)(375,379)(376,380);;
s1 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 65)( 10, 66)( 11, 68)( 12, 67)
( 13, 61)( 14, 62)( 15, 64)( 16, 63)( 17, 57)( 18, 58)( 19, 60)( 20, 59)
( 21, 53)( 22, 54)( 23, 56)( 24, 55)( 25, 49)( 26, 50)( 27, 52)( 28, 51)
( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 39, 40)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)( 75,140)
( 76,139)( 77,201)( 78,202)( 79,204)( 80,203)( 81,197)( 82,198)( 83,200)
( 84,199)( 85,193)( 86,194)( 87,196)( 88,195)( 89,189)( 90,190)( 91,192)
( 92,191)( 93,185)( 94,186)( 95,188)( 96,187)( 97,181)( 98,182)( 99,184)
(100,183)(101,177)(102,178)(103,180)(104,179)(105,173)(106,174)(107,176)
(108,175)(109,169)(110,170)(111,172)(112,171)(113,165)(114,166)(115,168)
(116,167)(117,161)(118,162)(119,164)(120,163)(121,157)(122,158)(123,160)
(124,159)(125,153)(126,154)(127,156)(128,155)(129,149)(130,150)(131,152)
(132,151)(133,145)(134,146)(135,148)(136,147)(205,209)(206,210)(207,212)
(208,211)(213,269)(214,270)(215,272)(216,271)(217,265)(218,266)(219,268)
(220,267)(221,261)(222,262)(223,264)(224,263)(225,257)(226,258)(227,260)
(228,259)(229,253)(230,254)(231,256)(232,255)(233,249)(234,250)(235,252)
(236,251)(237,245)(238,246)(239,248)(240,247)(243,244)(273,345)(274,346)
(275,348)(276,347)(277,341)(278,342)(279,344)(280,343)(281,405)(282,406)
(283,408)(284,407)(285,401)(286,402)(287,404)(288,403)(289,397)(290,398)
(291,400)(292,399)(293,393)(294,394)(295,396)(296,395)(297,389)(298,390)
(299,392)(300,391)(301,385)(302,386)(303,388)(304,387)(305,381)(306,382)
(307,384)(308,383)(309,377)(310,378)(311,380)(312,379)(313,373)(314,374)
(315,376)(316,375)(317,369)(318,370)(319,372)(320,371)(321,365)(322,366)
(323,368)(324,367)(325,361)(326,362)(327,364)(328,363)(329,357)(330,358)
(331,360)(332,359)(333,353)(334,354)(335,356)(336,355)(337,349)(338,350)
(339,352)(340,351);;
s2 := (  1,273)(  2,276)(  3,275)(  4,274)(  5,277)(  6,280)(  7,279)(  8,278)
(  9,281)( 10,284)( 11,283)( 12,282)( 13,285)( 14,288)( 15,287)( 16,286)
( 17,289)( 18,292)( 19,291)( 20,290)( 21,293)( 22,296)( 23,295)( 24,294)
( 25,297)( 26,300)( 27,299)( 28,298)( 29,301)( 30,304)( 31,303)( 32,302)
( 33,305)( 34,308)( 35,307)( 36,306)( 37,309)( 38,312)( 39,311)( 40,310)
( 41,313)( 42,316)( 43,315)( 44,314)( 45,317)( 46,320)( 47,319)( 48,318)
( 49,321)( 50,324)( 51,323)( 52,322)( 53,325)( 54,328)( 55,327)( 56,326)
( 57,329)( 58,332)( 59,331)( 60,330)( 61,333)( 62,336)( 63,335)( 64,334)
( 65,337)( 66,340)( 67,339)( 68,338)( 69,205)( 70,208)( 71,207)( 72,206)
( 73,209)( 74,212)( 75,211)( 76,210)( 77,213)( 78,216)( 79,215)( 80,214)
( 81,217)( 82,220)( 83,219)( 84,218)( 85,221)( 86,224)( 87,223)( 88,222)
( 89,225)( 90,228)( 91,227)( 92,226)( 93,229)( 94,232)( 95,231)( 96,230)
( 97,233)( 98,236)( 99,235)(100,234)(101,237)(102,240)(103,239)(104,238)
(105,241)(106,244)(107,243)(108,242)(109,245)(110,248)(111,247)(112,246)
(113,249)(114,252)(115,251)(116,250)(117,253)(118,256)(119,255)(120,254)
(121,257)(122,260)(123,259)(124,258)(125,261)(126,264)(127,263)(128,262)
(129,265)(130,268)(131,267)(132,266)(133,269)(134,272)(135,271)(136,270)
(137,341)(138,344)(139,343)(140,342)(141,345)(142,348)(143,347)(144,346)
(145,349)(146,352)(147,351)(148,350)(149,353)(150,356)(151,355)(152,354)
(153,357)(154,360)(155,359)(156,358)(157,361)(158,364)(159,363)(160,362)
(161,365)(162,368)(163,367)(164,366)(165,369)(166,372)(167,371)(168,370)
(169,373)(170,376)(171,375)(172,374)(173,377)(174,380)(175,379)(176,378)
(177,381)(178,384)(179,383)(180,382)(181,385)(182,388)(183,387)(184,386)
(185,389)(186,392)(187,391)(188,390)(189,393)(190,396)(191,395)(192,394)
(193,397)(194,400)(195,399)(196,398)(197,401)(198,404)(199,403)(200,402)
(201,405)(202,408)(203,407)(204,406);;
s3 := (  1,206)(  2,205)(  3,207)(  4,208)(  5,210)(  6,209)(  7,211)(  8,212)
(  9,214)( 10,213)( 11,215)( 12,216)( 13,218)( 14,217)( 15,219)( 16,220)
( 17,222)( 18,221)( 19,223)( 20,224)( 21,226)( 22,225)( 23,227)( 24,228)
( 25,230)( 26,229)( 27,231)( 28,232)( 29,234)( 30,233)( 31,235)( 32,236)
( 33,238)( 34,237)( 35,239)( 36,240)( 37,242)( 38,241)( 39,243)( 40,244)
( 41,246)( 42,245)( 43,247)( 44,248)( 45,250)( 46,249)( 47,251)( 48,252)
( 49,254)( 50,253)( 51,255)( 52,256)( 53,258)( 54,257)( 55,259)( 56,260)
( 57,262)( 58,261)( 59,263)( 60,264)( 61,266)( 62,265)( 63,267)( 64,268)
( 65,270)( 66,269)( 67,271)( 68,272)( 69,342)( 70,341)( 71,343)( 72,344)
( 73,346)( 74,345)( 75,347)( 76,348)( 77,350)( 78,349)( 79,351)( 80,352)
( 81,354)( 82,353)( 83,355)( 84,356)( 85,358)( 86,357)( 87,359)( 88,360)
( 89,362)( 90,361)( 91,363)( 92,364)( 93,366)( 94,365)( 95,367)( 96,368)
( 97,370)( 98,369)( 99,371)(100,372)(101,374)(102,373)(103,375)(104,376)
(105,378)(106,377)(107,379)(108,380)(109,382)(110,381)(111,383)(112,384)
(113,386)(114,385)(115,387)(116,388)(117,390)(118,389)(119,391)(120,392)
(121,394)(122,393)(123,395)(124,396)(125,398)(126,397)(127,399)(128,400)
(129,402)(130,401)(131,403)(132,404)(133,406)(134,405)(135,407)(136,408)
(137,274)(138,273)(139,275)(140,276)(141,278)(142,277)(143,279)(144,280)
(145,282)(146,281)(147,283)(148,284)(149,286)(150,285)(151,287)(152,288)
(153,290)(154,289)(155,291)(156,292)(157,294)(158,293)(159,295)(160,296)
(161,298)(162,297)(163,299)(164,300)(165,302)(166,301)(167,303)(168,304)
(169,306)(170,305)(171,307)(172,308)(173,310)(174,309)(175,311)(176,312)
(177,314)(178,313)(179,315)(180,316)(181,318)(182,317)(183,319)(184,320)
(185,322)(186,321)(187,323)(188,324)(189,326)(190,325)(191,327)(192,328)
(193,330)(194,329)(195,331)(196,332)(197,334)(198,333)(199,335)(200,336)
(201,338)(202,337)(203,339)(204,340);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(408)!(  5, 65)(  6, 66)(  7, 67)(  8, 68)(  9, 61)( 10, 62)( 11, 63)
( 12, 64)( 13, 57)( 14, 58)( 15, 59)( 16, 60)( 17, 53)( 18, 54)( 19, 55)
( 20, 56)( 21, 49)( 22, 50)( 23, 51)( 24, 52)( 25, 45)( 26, 46)( 27, 47)
( 28, 48)( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 33, 37)( 34, 38)( 35, 39)
( 36, 40)( 73,133)( 74,134)( 75,135)( 76,136)( 77,129)( 78,130)( 79,131)
( 80,132)( 81,125)( 82,126)( 83,127)( 84,128)( 85,121)( 86,122)( 87,123)
( 88,124)( 89,117)( 90,118)( 91,119)( 92,120)( 93,113)( 94,114)( 95,115)
( 96,116)( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)
(104,108)(141,201)(142,202)(143,203)(144,204)(145,197)(146,198)(147,199)
(148,200)(149,193)(150,194)(151,195)(152,196)(153,189)(154,190)(155,191)
(156,192)(157,185)(158,186)(159,187)(160,188)(161,181)(162,182)(163,183)
(164,184)(165,177)(166,178)(167,179)(168,180)(169,173)(170,174)(171,175)
(172,176)(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)
(216,268)(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)
(224,260)(225,253)(226,254)(227,255)(228,256)(229,249)(230,250)(231,251)
(232,252)(233,245)(234,246)(235,247)(236,248)(237,241)(238,242)(239,243)
(240,244)(277,337)(278,338)(279,339)(280,340)(281,333)(282,334)(283,335)
(284,336)(285,329)(286,330)(287,331)(288,332)(289,325)(290,326)(291,327)
(292,328)(293,321)(294,322)(295,323)(296,324)(297,317)(298,318)(299,319)
(300,320)(301,313)(302,314)(303,315)(304,316)(305,309)(306,310)(307,311)
(308,312)(345,405)(346,406)(347,407)(348,408)(349,401)(350,402)(351,403)
(352,404)(353,397)(354,398)(355,399)(356,400)(357,393)(358,394)(359,395)
(360,396)(361,389)(362,390)(363,391)(364,392)(365,385)(366,386)(367,387)
(368,388)(369,381)(370,382)(371,383)(372,384)(373,377)(374,378)(375,379)
(376,380);
s1 := Sym(408)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 65)( 10, 66)( 11, 68)
( 12, 67)( 13, 61)( 14, 62)( 15, 64)( 16, 63)( 17, 57)( 18, 58)( 19, 60)
( 20, 59)( 21, 53)( 22, 54)( 23, 56)( 24, 55)( 25, 49)( 26, 50)( 27, 52)
( 28, 51)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 39, 40)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)
( 75,140)( 76,139)( 77,201)( 78,202)( 79,204)( 80,203)( 81,197)( 82,198)
( 83,200)( 84,199)( 85,193)( 86,194)( 87,196)( 88,195)( 89,189)( 90,190)
( 91,192)( 92,191)( 93,185)( 94,186)( 95,188)( 96,187)( 97,181)( 98,182)
( 99,184)(100,183)(101,177)(102,178)(103,180)(104,179)(105,173)(106,174)
(107,176)(108,175)(109,169)(110,170)(111,172)(112,171)(113,165)(114,166)
(115,168)(116,167)(117,161)(118,162)(119,164)(120,163)(121,157)(122,158)
(123,160)(124,159)(125,153)(126,154)(127,156)(128,155)(129,149)(130,150)
(131,152)(132,151)(133,145)(134,146)(135,148)(136,147)(205,209)(206,210)
(207,212)(208,211)(213,269)(214,270)(215,272)(216,271)(217,265)(218,266)
(219,268)(220,267)(221,261)(222,262)(223,264)(224,263)(225,257)(226,258)
(227,260)(228,259)(229,253)(230,254)(231,256)(232,255)(233,249)(234,250)
(235,252)(236,251)(237,245)(238,246)(239,248)(240,247)(243,244)(273,345)
(274,346)(275,348)(276,347)(277,341)(278,342)(279,344)(280,343)(281,405)
(282,406)(283,408)(284,407)(285,401)(286,402)(287,404)(288,403)(289,397)
(290,398)(291,400)(292,399)(293,393)(294,394)(295,396)(296,395)(297,389)
(298,390)(299,392)(300,391)(301,385)(302,386)(303,388)(304,387)(305,381)
(306,382)(307,384)(308,383)(309,377)(310,378)(311,380)(312,379)(313,373)
(314,374)(315,376)(316,375)(317,369)(318,370)(319,372)(320,371)(321,365)
(322,366)(323,368)(324,367)(325,361)(326,362)(327,364)(328,363)(329,357)
(330,358)(331,360)(332,359)(333,353)(334,354)(335,356)(336,355)(337,349)
(338,350)(339,352)(340,351);
s2 := Sym(408)!(  1,273)(  2,276)(  3,275)(  4,274)(  5,277)(  6,280)(  7,279)
(  8,278)(  9,281)( 10,284)( 11,283)( 12,282)( 13,285)( 14,288)( 15,287)
( 16,286)( 17,289)( 18,292)( 19,291)( 20,290)( 21,293)( 22,296)( 23,295)
( 24,294)( 25,297)( 26,300)( 27,299)( 28,298)( 29,301)( 30,304)( 31,303)
( 32,302)( 33,305)( 34,308)( 35,307)( 36,306)( 37,309)( 38,312)( 39,311)
( 40,310)( 41,313)( 42,316)( 43,315)( 44,314)( 45,317)( 46,320)( 47,319)
( 48,318)( 49,321)( 50,324)( 51,323)( 52,322)( 53,325)( 54,328)( 55,327)
( 56,326)( 57,329)( 58,332)( 59,331)( 60,330)( 61,333)( 62,336)( 63,335)
( 64,334)( 65,337)( 66,340)( 67,339)( 68,338)( 69,205)( 70,208)( 71,207)
( 72,206)( 73,209)( 74,212)( 75,211)( 76,210)( 77,213)( 78,216)( 79,215)
( 80,214)( 81,217)( 82,220)( 83,219)( 84,218)( 85,221)( 86,224)( 87,223)
( 88,222)( 89,225)( 90,228)( 91,227)( 92,226)( 93,229)( 94,232)( 95,231)
( 96,230)( 97,233)( 98,236)( 99,235)(100,234)(101,237)(102,240)(103,239)
(104,238)(105,241)(106,244)(107,243)(108,242)(109,245)(110,248)(111,247)
(112,246)(113,249)(114,252)(115,251)(116,250)(117,253)(118,256)(119,255)
(120,254)(121,257)(122,260)(123,259)(124,258)(125,261)(126,264)(127,263)
(128,262)(129,265)(130,268)(131,267)(132,266)(133,269)(134,272)(135,271)
(136,270)(137,341)(138,344)(139,343)(140,342)(141,345)(142,348)(143,347)
(144,346)(145,349)(146,352)(147,351)(148,350)(149,353)(150,356)(151,355)
(152,354)(153,357)(154,360)(155,359)(156,358)(157,361)(158,364)(159,363)
(160,362)(161,365)(162,368)(163,367)(164,366)(165,369)(166,372)(167,371)
(168,370)(169,373)(170,376)(171,375)(172,374)(173,377)(174,380)(175,379)
(176,378)(177,381)(178,384)(179,383)(180,382)(181,385)(182,388)(183,387)
(184,386)(185,389)(186,392)(187,391)(188,390)(189,393)(190,396)(191,395)
(192,394)(193,397)(194,400)(195,399)(196,398)(197,401)(198,404)(199,403)
(200,402)(201,405)(202,408)(203,407)(204,406);
s3 := Sym(408)!(  1,206)(  2,205)(  3,207)(  4,208)(  5,210)(  6,209)(  7,211)
(  8,212)(  9,214)( 10,213)( 11,215)( 12,216)( 13,218)( 14,217)( 15,219)
( 16,220)( 17,222)( 18,221)( 19,223)( 20,224)( 21,226)( 22,225)( 23,227)
( 24,228)( 25,230)( 26,229)( 27,231)( 28,232)( 29,234)( 30,233)( 31,235)
( 32,236)( 33,238)( 34,237)( 35,239)( 36,240)( 37,242)( 38,241)( 39,243)
( 40,244)( 41,246)( 42,245)( 43,247)( 44,248)( 45,250)( 46,249)( 47,251)
( 48,252)( 49,254)( 50,253)( 51,255)( 52,256)( 53,258)( 54,257)( 55,259)
( 56,260)( 57,262)( 58,261)( 59,263)( 60,264)( 61,266)( 62,265)( 63,267)
( 64,268)( 65,270)( 66,269)( 67,271)( 68,272)( 69,342)( 70,341)( 71,343)
( 72,344)( 73,346)( 74,345)( 75,347)( 76,348)( 77,350)( 78,349)( 79,351)
( 80,352)( 81,354)( 82,353)( 83,355)( 84,356)( 85,358)( 86,357)( 87,359)
( 88,360)( 89,362)( 90,361)( 91,363)( 92,364)( 93,366)( 94,365)( 95,367)
( 96,368)( 97,370)( 98,369)( 99,371)(100,372)(101,374)(102,373)(103,375)
(104,376)(105,378)(106,377)(107,379)(108,380)(109,382)(110,381)(111,383)
(112,384)(113,386)(114,385)(115,387)(116,388)(117,390)(118,389)(119,391)
(120,392)(121,394)(122,393)(123,395)(124,396)(125,398)(126,397)(127,399)
(128,400)(129,402)(130,401)(131,403)(132,404)(133,406)(134,405)(135,407)
(136,408)(137,274)(138,273)(139,275)(140,276)(141,278)(142,277)(143,279)
(144,280)(145,282)(146,281)(147,283)(148,284)(149,286)(150,285)(151,287)
(152,288)(153,290)(154,289)(155,291)(156,292)(157,294)(158,293)(159,295)
(160,296)(161,298)(162,297)(163,299)(164,300)(165,302)(166,301)(167,303)
(168,304)(169,306)(170,305)(171,307)(172,308)(173,310)(174,309)(175,311)
(176,312)(177,314)(178,313)(179,315)(180,316)(181,318)(182,317)(183,319)
(184,320)(185,322)(186,321)(187,323)(188,324)(189,326)(190,325)(191,327)
(192,328)(193,330)(194,329)(195,331)(196,332)(197,334)(198,333)(199,335)
(200,336)(201,338)(202,337)(203,339)(204,340);
poly := sub<Sym(408)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope