Polytope of Type {2,414}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,414}*1656
if this polytope has a name.
Group : SmallGroup(1656,44)
Rank : 3
Schlafli Type : {2,414}
Number of vertices, edges, etc : 2, 414, 414
Order of s0s1s2 : 414
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,207}*828
   3-fold quotients : {2,138}*552
   6-fold quotients : {2,69}*276
   9-fold quotients : {2,46}*184
   18-fold quotients : {2,23}*92
   23-fold quotients : {2,18}*72
   46-fold quotients : {2,9}*36
   69-fold quotients : {2,6}*24
   138-fold quotients : {2,3}*12
   207-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6, 69)(  7, 71)(  8, 70)(  9, 66)( 10, 68)( 11, 67)( 12, 63)
( 13, 65)( 14, 64)( 15, 60)( 16, 62)( 17, 61)( 18, 57)( 19, 59)( 20, 58)
( 21, 54)( 22, 56)( 23, 55)( 24, 51)( 25, 53)( 26, 52)( 27, 48)( 28, 50)
( 29, 49)( 30, 45)( 31, 47)( 32, 46)( 33, 42)( 34, 44)( 35, 43)( 36, 39)
( 37, 41)( 38, 40)( 72,143)( 73,142)( 74,141)( 75,209)( 76,208)( 77,207)
( 78,206)( 79,205)( 80,204)( 81,203)( 82,202)( 83,201)( 84,200)( 85,199)
( 86,198)( 87,197)( 88,196)( 89,195)( 90,194)( 91,193)( 92,192)( 93,191)
( 94,190)( 95,189)( 96,188)( 97,187)( 98,186)( 99,185)(100,184)(101,183)
(102,182)(103,181)(104,180)(105,179)(106,178)(107,177)(108,176)(109,175)
(110,174)(111,173)(112,172)(113,171)(114,170)(115,169)(116,168)(117,167)
(118,166)(119,165)(120,164)(121,163)(122,162)(123,161)(124,160)(125,159)
(126,158)(127,157)(128,156)(129,155)(130,154)(131,153)(132,152)(133,151)
(134,150)(135,149)(136,148)(137,147)(138,146)(139,145)(140,144)(211,212)
(213,276)(214,278)(215,277)(216,273)(217,275)(218,274)(219,270)(220,272)
(221,271)(222,267)(223,269)(224,268)(225,264)(226,266)(227,265)(228,261)
(229,263)(230,262)(231,258)(232,260)(233,259)(234,255)(235,257)(236,256)
(237,252)(238,254)(239,253)(240,249)(241,251)(242,250)(243,246)(244,248)
(245,247)(279,350)(280,349)(281,348)(282,416)(283,415)(284,414)(285,413)
(286,412)(287,411)(288,410)(289,409)(290,408)(291,407)(292,406)(293,405)
(294,404)(295,403)(296,402)(297,401)(298,400)(299,399)(300,398)(301,397)
(302,396)(303,395)(304,394)(305,393)(306,392)(307,391)(308,390)(309,389)
(310,388)(311,387)(312,386)(313,385)(314,384)(315,383)(316,382)(317,381)
(318,380)(319,379)(320,378)(321,377)(322,376)(323,375)(324,374)(325,373)
(326,372)(327,371)(328,370)(329,369)(330,368)(331,367)(332,366)(333,365)
(334,364)(335,363)(336,362)(337,361)(338,360)(339,359)(340,358)(341,357)
(342,356)(343,355)(344,354)(345,353)(346,352)(347,351);;
s2 := (  3,282)(  4,284)(  5,283)(  6,279)(  7,281)(  8,280)(  9,345)( 10,347)
( 11,346)( 12,342)( 13,344)( 14,343)( 15,339)( 16,341)( 17,340)( 18,336)
( 19,338)( 20,337)( 21,333)( 22,335)( 23,334)( 24,330)( 25,332)( 26,331)
( 27,327)( 28,329)( 29,328)( 30,324)( 31,326)( 32,325)( 33,321)( 34,323)
( 35,322)( 36,318)( 37,320)( 38,319)( 39,315)( 40,317)( 41,316)( 42,312)
( 43,314)( 44,313)( 45,309)( 46,311)( 47,310)( 48,306)( 49,308)( 50,307)
( 51,303)( 52,305)( 53,304)( 54,300)( 55,302)( 56,301)( 57,297)( 58,299)
( 59,298)( 60,294)( 61,296)( 62,295)( 63,291)( 64,293)( 65,292)( 66,288)
( 67,290)( 68,289)( 69,285)( 70,287)( 71,286)( 72,213)( 73,215)( 74,214)
( 75,210)( 76,212)( 77,211)( 78,276)( 79,278)( 80,277)( 81,273)( 82,275)
( 83,274)( 84,270)( 85,272)( 86,271)( 87,267)( 88,269)( 89,268)( 90,264)
( 91,266)( 92,265)( 93,261)( 94,263)( 95,262)( 96,258)( 97,260)( 98,259)
( 99,255)(100,257)(101,256)(102,252)(103,254)(104,253)(105,249)(106,251)
(107,250)(108,246)(109,248)(110,247)(111,243)(112,245)(113,244)(114,240)
(115,242)(116,241)(117,237)(118,239)(119,238)(120,234)(121,236)(122,235)
(123,231)(124,233)(125,232)(126,228)(127,230)(128,229)(129,225)(130,227)
(131,226)(132,222)(133,224)(134,223)(135,219)(136,221)(137,220)(138,216)
(139,218)(140,217)(141,353)(142,352)(143,351)(144,350)(145,349)(146,348)
(147,416)(148,415)(149,414)(150,413)(151,412)(152,411)(153,410)(154,409)
(155,408)(156,407)(157,406)(158,405)(159,404)(160,403)(161,402)(162,401)
(163,400)(164,399)(165,398)(166,397)(167,396)(168,395)(169,394)(170,393)
(171,392)(172,391)(173,390)(174,389)(175,388)(176,387)(177,386)(178,385)
(179,384)(180,383)(181,382)(182,381)(183,380)(184,379)(185,378)(186,377)
(187,376)(188,375)(189,374)(190,373)(191,372)(192,371)(193,370)(194,369)
(195,368)(196,367)(197,366)(198,365)(199,364)(200,363)(201,362)(202,361)
(203,360)(204,359)(205,358)(206,357)(207,356)(208,355)(209,354);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(416)!(1,2);
s1 := Sym(416)!(  4,  5)(  6, 69)(  7, 71)(  8, 70)(  9, 66)( 10, 68)( 11, 67)
( 12, 63)( 13, 65)( 14, 64)( 15, 60)( 16, 62)( 17, 61)( 18, 57)( 19, 59)
( 20, 58)( 21, 54)( 22, 56)( 23, 55)( 24, 51)( 25, 53)( 26, 52)( 27, 48)
( 28, 50)( 29, 49)( 30, 45)( 31, 47)( 32, 46)( 33, 42)( 34, 44)( 35, 43)
( 36, 39)( 37, 41)( 38, 40)( 72,143)( 73,142)( 74,141)( 75,209)( 76,208)
( 77,207)( 78,206)( 79,205)( 80,204)( 81,203)( 82,202)( 83,201)( 84,200)
( 85,199)( 86,198)( 87,197)( 88,196)( 89,195)( 90,194)( 91,193)( 92,192)
( 93,191)( 94,190)( 95,189)( 96,188)( 97,187)( 98,186)( 99,185)(100,184)
(101,183)(102,182)(103,181)(104,180)(105,179)(106,178)(107,177)(108,176)
(109,175)(110,174)(111,173)(112,172)(113,171)(114,170)(115,169)(116,168)
(117,167)(118,166)(119,165)(120,164)(121,163)(122,162)(123,161)(124,160)
(125,159)(126,158)(127,157)(128,156)(129,155)(130,154)(131,153)(132,152)
(133,151)(134,150)(135,149)(136,148)(137,147)(138,146)(139,145)(140,144)
(211,212)(213,276)(214,278)(215,277)(216,273)(217,275)(218,274)(219,270)
(220,272)(221,271)(222,267)(223,269)(224,268)(225,264)(226,266)(227,265)
(228,261)(229,263)(230,262)(231,258)(232,260)(233,259)(234,255)(235,257)
(236,256)(237,252)(238,254)(239,253)(240,249)(241,251)(242,250)(243,246)
(244,248)(245,247)(279,350)(280,349)(281,348)(282,416)(283,415)(284,414)
(285,413)(286,412)(287,411)(288,410)(289,409)(290,408)(291,407)(292,406)
(293,405)(294,404)(295,403)(296,402)(297,401)(298,400)(299,399)(300,398)
(301,397)(302,396)(303,395)(304,394)(305,393)(306,392)(307,391)(308,390)
(309,389)(310,388)(311,387)(312,386)(313,385)(314,384)(315,383)(316,382)
(317,381)(318,380)(319,379)(320,378)(321,377)(322,376)(323,375)(324,374)
(325,373)(326,372)(327,371)(328,370)(329,369)(330,368)(331,367)(332,366)
(333,365)(334,364)(335,363)(336,362)(337,361)(338,360)(339,359)(340,358)
(341,357)(342,356)(343,355)(344,354)(345,353)(346,352)(347,351);
s2 := Sym(416)!(  3,282)(  4,284)(  5,283)(  6,279)(  7,281)(  8,280)(  9,345)
( 10,347)( 11,346)( 12,342)( 13,344)( 14,343)( 15,339)( 16,341)( 17,340)
( 18,336)( 19,338)( 20,337)( 21,333)( 22,335)( 23,334)( 24,330)( 25,332)
( 26,331)( 27,327)( 28,329)( 29,328)( 30,324)( 31,326)( 32,325)( 33,321)
( 34,323)( 35,322)( 36,318)( 37,320)( 38,319)( 39,315)( 40,317)( 41,316)
( 42,312)( 43,314)( 44,313)( 45,309)( 46,311)( 47,310)( 48,306)( 49,308)
( 50,307)( 51,303)( 52,305)( 53,304)( 54,300)( 55,302)( 56,301)( 57,297)
( 58,299)( 59,298)( 60,294)( 61,296)( 62,295)( 63,291)( 64,293)( 65,292)
( 66,288)( 67,290)( 68,289)( 69,285)( 70,287)( 71,286)( 72,213)( 73,215)
( 74,214)( 75,210)( 76,212)( 77,211)( 78,276)( 79,278)( 80,277)( 81,273)
( 82,275)( 83,274)( 84,270)( 85,272)( 86,271)( 87,267)( 88,269)( 89,268)
( 90,264)( 91,266)( 92,265)( 93,261)( 94,263)( 95,262)( 96,258)( 97,260)
( 98,259)( 99,255)(100,257)(101,256)(102,252)(103,254)(104,253)(105,249)
(106,251)(107,250)(108,246)(109,248)(110,247)(111,243)(112,245)(113,244)
(114,240)(115,242)(116,241)(117,237)(118,239)(119,238)(120,234)(121,236)
(122,235)(123,231)(124,233)(125,232)(126,228)(127,230)(128,229)(129,225)
(130,227)(131,226)(132,222)(133,224)(134,223)(135,219)(136,221)(137,220)
(138,216)(139,218)(140,217)(141,353)(142,352)(143,351)(144,350)(145,349)
(146,348)(147,416)(148,415)(149,414)(150,413)(151,412)(152,411)(153,410)
(154,409)(155,408)(156,407)(157,406)(158,405)(159,404)(160,403)(161,402)
(162,401)(163,400)(164,399)(165,398)(166,397)(167,396)(168,395)(169,394)
(170,393)(171,392)(172,391)(173,390)(174,389)(175,388)(176,387)(177,386)
(178,385)(179,384)(180,383)(181,382)(182,381)(183,380)(184,379)(185,378)
(186,377)(187,376)(188,375)(189,374)(190,373)(191,372)(192,371)(193,370)
(194,369)(195,368)(196,367)(197,366)(198,365)(199,364)(200,363)(201,362)
(202,361)(203,360)(204,359)(205,358)(206,357)(207,356)(208,355)(209,354);
poly := sub<Sym(416)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope