Polytope of Type {414,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {414,2}*1656
if this polytope has a name.
Group : SmallGroup(1656,44)
Rank : 3
Schlafli Type : {414,2}
Number of vertices, edges, etc : 414, 414, 2
Order of s0s1s2 : 414
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {207,2}*828
   3-fold quotients : {138,2}*552
   6-fold quotients : {69,2}*276
   9-fold quotients : {46,2}*184
   18-fold quotients : {23,2}*92
   23-fold quotients : {18,2}*72
   46-fold quotients : {9,2}*36
   69-fold quotients : {6,2}*24
   138-fold quotients : {3,2}*12
   207-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 67)(  5, 69)(  6, 68)(  7, 64)(  8, 66)(  9, 65)( 10, 61)
( 11, 63)( 12, 62)( 13, 58)( 14, 60)( 15, 59)( 16, 55)( 17, 57)( 18, 56)
( 19, 52)( 20, 54)( 21, 53)( 22, 49)( 23, 51)( 24, 50)( 25, 46)( 26, 48)
( 27, 47)( 28, 43)( 29, 45)( 30, 44)( 31, 40)( 32, 42)( 33, 41)( 34, 37)
( 35, 39)( 36, 38)( 70,141)( 71,140)( 72,139)( 73,207)( 74,206)( 75,205)
( 76,204)( 77,203)( 78,202)( 79,201)( 80,200)( 81,199)( 82,198)( 83,197)
( 84,196)( 85,195)( 86,194)( 87,193)( 88,192)( 89,191)( 90,190)( 91,189)
( 92,188)( 93,187)( 94,186)( 95,185)( 96,184)( 97,183)( 98,182)( 99,181)
(100,180)(101,179)(102,178)(103,177)(104,176)(105,175)(106,174)(107,173)
(108,172)(109,171)(110,170)(111,169)(112,168)(113,167)(114,166)(115,165)
(116,164)(117,163)(118,162)(119,161)(120,160)(121,159)(122,158)(123,157)
(124,156)(125,155)(126,154)(127,153)(128,152)(129,151)(130,150)(131,149)
(132,148)(133,147)(134,146)(135,145)(136,144)(137,143)(138,142)(209,210)
(211,274)(212,276)(213,275)(214,271)(215,273)(216,272)(217,268)(218,270)
(219,269)(220,265)(221,267)(222,266)(223,262)(224,264)(225,263)(226,259)
(227,261)(228,260)(229,256)(230,258)(231,257)(232,253)(233,255)(234,254)
(235,250)(236,252)(237,251)(238,247)(239,249)(240,248)(241,244)(242,246)
(243,245)(277,348)(278,347)(279,346)(280,414)(281,413)(282,412)(283,411)
(284,410)(285,409)(286,408)(287,407)(288,406)(289,405)(290,404)(291,403)
(292,402)(293,401)(294,400)(295,399)(296,398)(297,397)(298,396)(299,395)
(300,394)(301,393)(302,392)(303,391)(304,390)(305,389)(306,388)(307,387)
(308,386)(309,385)(310,384)(311,383)(312,382)(313,381)(314,380)(315,379)
(316,378)(317,377)(318,376)(319,375)(320,374)(321,373)(322,372)(323,371)
(324,370)(325,369)(326,368)(327,367)(328,366)(329,365)(330,364)(331,363)
(332,362)(333,361)(334,360)(335,359)(336,358)(337,357)(338,356)(339,355)
(340,354)(341,353)(342,352)(343,351)(344,350)(345,349);;
s1 := (  1,280)(  2,282)(  3,281)(  4,277)(  5,279)(  6,278)(  7,343)(  8,345)
(  9,344)( 10,340)( 11,342)( 12,341)( 13,337)( 14,339)( 15,338)( 16,334)
( 17,336)( 18,335)( 19,331)( 20,333)( 21,332)( 22,328)( 23,330)( 24,329)
( 25,325)( 26,327)( 27,326)( 28,322)( 29,324)( 30,323)( 31,319)( 32,321)
( 33,320)( 34,316)( 35,318)( 36,317)( 37,313)( 38,315)( 39,314)( 40,310)
( 41,312)( 42,311)( 43,307)( 44,309)( 45,308)( 46,304)( 47,306)( 48,305)
( 49,301)( 50,303)( 51,302)( 52,298)( 53,300)( 54,299)( 55,295)( 56,297)
( 57,296)( 58,292)( 59,294)( 60,293)( 61,289)( 62,291)( 63,290)( 64,286)
( 65,288)( 66,287)( 67,283)( 68,285)( 69,284)( 70,211)( 71,213)( 72,212)
( 73,208)( 74,210)( 75,209)( 76,274)( 77,276)( 78,275)( 79,271)( 80,273)
( 81,272)( 82,268)( 83,270)( 84,269)( 85,265)( 86,267)( 87,266)( 88,262)
( 89,264)( 90,263)( 91,259)( 92,261)( 93,260)( 94,256)( 95,258)( 96,257)
( 97,253)( 98,255)( 99,254)(100,250)(101,252)(102,251)(103,247)(104,249)
(105,248)(106,244)(107,246)(108,245)(109,241)(110,243)(111,242)(112,238)
(113,240)(114,239)(115,235)(116,237)(117,236)(118,232)(119,234)(120,233)
(121,229)(122,231)(123,230)(124,226)(125,228)(126,227)(127,223)(128,225)
(129,224)(130,220)(131,222)(132,221)(133,217)(134,219)(135,218)(136,214)
(137,216)(138,215)(139,351)(140,350)(141,349)(142,348)(143,347)(144,346)
(145,414)(146,413)(147,412)(148,411)(149,410)(150,409)(151,408)(152,407)
(153,406)(154,405)(155,404)(156,403)(157,402)(158,401)(159,400)(160,399)
(161,398)(162,397)(163,396)(164,395)(165,394)(166,393)(167,392)(168,391)
(169,390)(170,389)(171,388)(172,387)(173,386)(174,385)(175,384)(176,383)
(177,382)(178,381)(179,380)(180,379)(181,378)(182,377)(183,376)(184,375)
(185,374)(186,373)(187,372)(188,371)(189,370)(190,369)(191,368)(192,367)
(193,366)(194,365)(195,364)(196,363)(197,362)(198,361)(199,360)(200,359)
(201,358)(202,357)(203,356)(204,355)(205,354)(206,353)(207,352);;
s2 := (415,416);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(416)!(  2,  3)(  4, 67)(  5, 69)(  6, 68)(  7, 64)(  8, 66)(  9, 65)
( 10, 61)( 11, 63)( 12, 62)( 13, 58)( 14, 60)( 15, 59)( 16, 55)( 17, 57)
( 18, 56)( 19, 52)( 20, 54)( 21, 53)( 22, 49)( 23, 51)( 24, 50)( 25, 46)
( 26, 48)( 27, 47)( 28, 43)( 29, 45)( 30, 44)( 31, 40)( 32, 42)( 33, 41)
( 34, 37)( 35, 39)( 36, 38)( 70,141)( 71,140)( 72,139)( 73,207)( 74,206)
( 75,205)( 76,204)( 77,203)( 78,202)( 79,201)( 80,200)( 81,199)( 82,198)
( 83,197)( 84,196)( 85,195)( 86,194)( 87,193)( 88,192)( 89,191)( 90,190)
( 91,189)( 92,188)( 93,187)( 94,186)( 95,185)( 96,184)( 97,183)( 98,182)
( 99,181)(100,180)(101,179)(102,178)(103,177)(104,176)(105,175)(106,174)
(107,173)(108,172)(109,171)(110,170)(111,169)(112,168)(113,167)(114,166)
(115,165)(116,164)(117,163)(118,162)(119,161)(120,160)(121,159)(122,158)
(123,157)(124,156)(125,155)(126,154)(127,153)(128,152)(129,151)(130,150)
(131,149)(132,148)(133,147)(134,146)(135,145)(136,144)(137,143)(138,142)
(209,210)(211,274)(212,276)(213,275)(214,271)(215,273)(216,272)(217,268)
(218,270)(219,269)(220,265)(221,267)(222,266)(223,262)(224,264)(225,263)
(226,259)(227,261)(228,260)(229,256)(230,258)(231,257)(232,253)(233,255)
(234,254)(235,250)(236,252)(237,251)(238,247)(239,249)(240,248)(241,244)
(242,246)(243,245)(277,348)(278,347)(279,346)(280,414)(281,413)(282,412)
(283,411)(284,410)(285,409)(286,408)(287,407)(288,406)(289,405)(290,404)
(291,403)(292,402)(293,401)(294,400)(295,399)(296,398)(297,397)(298,396)
(299,395)(300,394)(301,393)(302,392)(303,391)(304,390)(305,389)(306,388)
(307,387)(308,386)(309,385)(310,384)(311,383)(312,382)(313,381)(314,380)
(315,379)(316,378)(317,377)(318,376)(319,375)(320,374)(321,373)(322,372)
(323,371)(324,370)(325,369)(326,368)(327,367)(328,366)(329,365)(330,364)
(331,363)(332,362)(333,361)(334,360)(335,359)(336,358)(337,357)(338,356)
(339,355)(340,354)(341,353)(342,352)(343,351)(344,350)(345,349);
s1 := Sym(416)!(  1,280)(  2,282)(  3,281)(  4,277)(  5,279)(  6,278)(  7,343)
(  8,345)(  9,344)( 10,340)( 11,342)( 12,341)( 13,337)( 14,339)( 15,338)
( 16,334)( 17,336)( 18,335)( 19,331)( 20,333)( 21,332)( 22,328)( 23,330)
( 24,329)( 25,325)( 26,327)( 27,326)( 28,322)( 29,324)( 30,323)( 31,319)
( 32,321)( 33,320)( 34,316)( 35,318)( 36,317)( 37,313)( 38,315)( 39,314)
( 40,310)( 41,312)( 42,311)( 43,307)( 44,309)( 45,308)( 46,304)( 47,306)
( 48,305)( 49,301)( 50,303)( 51,302)( 52,298)( 53,300)( 54,299)( 55,295)
( 56,297)( 57,296)( 58,292)( 59,294)( 60,293)( 61,289)( 62,291)( 63,290)
( 64,286)( 65,288)( 66,287)( 67,283)( 68,285)( 69,284)( 70,211)( 71,213)
( 72,212)( 73,208)( 74,210)( 75,209)( 76,274)( 77,276)( 78,275)( 79,271)
( 80,273)( 81,272)( 82,268)( 83,270)( 84,269)( 85,265)( 86,267)( 87,266)
( 88,262)( 89,264)( 90,263)( 91,259)( 92,261)( 93,260)( 94,256)( 95,258)
( 96,257)( 97,253)( 98,255)( 99,254)(100,250)(101,252)(102,251)(103,247)
(104,249)(105,248)(106,244)(107,246)(108,245)(109,241)(110,243)(111,242)
(112,238)(113,240)(114,239)(115,235)(116,237)(117,236)(118,232)(119,234)
(120,233)(121,229)(122,231)(123,230)(124,226)(125,228)(126,227)(127,223)
(128,225)(129,224)(130,220)(131,222)(132,221)(133,217)(134,219)(135,218)
(136,214)(137,216)(138,215)(139,351)(140,350)(141,349)(142,348)(143,347)
(144,346)(145,414)(146,413)(147,412)(148,411)(149,410)(150,409)(151,408)
(152,407)(153,406)(154,405)(155,404)(156,403)(157,402)(158,401)(159,400)
(160,399)(161,398)(162,397)(163,396)(164,395)(165,394)(166,393)(167,392)
(168,391)(169,390)(170,389)(171,388)(172,387)(173,386)(174,385)(175,384)
(176,383)(177,382)(178,381)(179,380)(180,379)(181,378)(182,377)(183,376)
(184,375)(185,374)(186,373)(187,372)(188,371)(189,370)(190,369)(191,368)
(192,367)(193,366)(194,365)(195,364)(196,363)(197,362)(198,361)(199,360)
(200,359)(201,358)(202,357)(203,356)(204,355)(205,354)(206,353)(207,352);
s2 := Sym(416)!(415,416);
poly := sub<Sym(416)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope