Polytope of Type {52,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {52,8,2}*1664b
if this polytope has a name.
Group : SmallGroup(1664,13835)
Rank : 4
Schlafli Type : {52,8,2}
Number of vertices, edges, etc : 52, 208, 8, 2
Order of s0s1s2s3 : 104
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {52,4,2}*832
   4-fold quotients : {52,2,2}*416, {26,4,2}*416
   8-fold quotients : {26,2,2}*208
   13-fold quotients : {4,8,2}*128b
   16-fold quotients : {13,2,2}*104
   26-fold quotients : {4,4,2}*64
   52-fold quotients : {2,4,2}*32, {4,2,2}*32
   104-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)( 30, 50)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)
( 39, 41)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 67, 78)
( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 92)( 80,104)( 81,103)
( 82,102)( 83,101)( 84,100)( 85, 99)( 86, 98)( 87, 97)( 88, 96)( 89, 95)
( 90, 94)( 91, 93)(105,157)(106,169)(107,168)(108,167)(109,166)(110,165)
(111,164)(112,163)(113,162)(114,161)(115,160)(116,159)(117,158)(118,170)
(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)(126,175)
(127,174)(128,173)(129,172)(130,171)(131,196)(132,208)(133,207)(134,206)
(135,205)(136,204)(137,203)(138,202)(139,201)(140,200)(141,199)(142,198)
(143,197)(144,183)(145,195)(146,194)(147,193)(148,192)(149,191)(150,190)
(151,189)(152,188)(153,187)(154,186)(155,185)(156,184);;
s1 := (  1,106)(  2,105)(  3,117)(  4,116)(  5,115)(  6,114)(  7,113)(  8,112)
(  9,111)( 10,110)( 11,109)( 12,108)( 13,107)( 14,119)( 15,118)( 16,130)
( 17,129)( 18,128)( 19,127)( 20,126)( 21,125)( 22,124)( 23,123)( 24,122)
( 25,121)( 26,120)( 27,145)( 28,144)( 29,156)( 30,155)( 31,154)( 32,153)
( 33,152)( 34,151)( 35,150)( 36,149)( 37,148)( 38,147)( 39,146)( 40,132)
( 41,131)( 42,143)( 43,142)( 44,141)( 45,140)( 46,139)( 47,138)( 48,137)
( 49,136)( 50,135)( 51,134)( 52,133)( 53,158)( 54,157)( 55,169)( 56,168)
( 57,167)( 58,166)( 59,165)( 60,164)( 61,163)( 62,162)( 63,161)( 64,160)
( 65,159)( 66,171)( 67,170)( 68,182)( 69,181)( 70,180)( 71,179)( 72,178)
( 73,177)( 74,176)( 75,175)( 76,174)( 77,173)( 78,172)( 79,197)( 80,196)
( 81,208)( 82,207)( 83,206)( 84,205)( 85,204)( 86,203)( 87,202)( 88,201)
( 89,200)( 90,199)( 91,198)( 92,184)( 93,183)( 94,195)( 95,194)( 96,193)
( 97,192)( 98,191)( 99,190)(100,189)(101,188)(102,187)(103,186)(104,185);;
s2 := ( 27, 40)( 28, 41)( 29, 42)( 30, 43)( 31, 44)( 32, 45)( 33, 46)( 34, 47)
( 35, 48)( 36, 49)( 37, 50)( 38, 51)( 39, 52)( 53, 66)( 54, 67)( 55, 68)
( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)( 63, 76)
( 64, 77)( 65, 78)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)
(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)
(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)
(127,153)(128,154)(129,155)(130,156)(157,196)(158,197)(159,198)(160,199)
(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)
(169,208)(170,183)(171,184)(172,185)(173,186)(174,187)(175,188)(176,189)
(177,190)(178,191)(179,192)(180,193)(181,194)(182,195);;
s3 := (209,210);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(210)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)
( 30, 50)( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)
( 38, 42)( 39, 41)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)
( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 92)( 80,104)
( 81,103)( 82,102)( 83,101)( 84,100)( 85, 99)( 86, 98)( 87, 97)( 88, 96)
( 89, 95)( 90, 94)( 91, 93)(105,157)(106,169)(107,168)(108,167)(109,166)
(110,165)(111,164)(112,163)(113,162)(114,161)(115,160)(116,159)(117,158)
(118,170)(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)
(126,175)(127,174)(128,173)(129,172)(130,171)(131,196)(132,208)(133,207)
(134,206)(135,205)(136,204)(137,203)(138,202)(139,201)(140,200)(141,199)
(142,198)(143,197)(144,183)(145,195)(146,194)(147,193)(148,192)(149,191)
(150,190)(151,189)(152,188)(153,187)(154,186)(155,185)(156,184);
s1 := Sym(210)!(  1,106)(  2,105)(  3,117)(  4,116)(  5,115)(  6,114)(  7,113)
(  8,112)(  9,111)( 10,110)( 11,109)( 12,108)( 13,107)( 14,119)( 15,118)
( 16,130)( 17,129)( 18,128)( 19,127)( 20,126)( 21,125)( 22,124)( 23,123)
( 24,122)( 25,121)( 26,120)( 27,145)( 28,144)( 29,156)( 30,155)( 31,154)
( 32,153)( 33,152)( 34,151)( 35,150)( 36,149)( 37,148)( 38,147)( 39,146)
( 40,132)( 41,131)( 42,143)( 43,142)( 44,141)( 45,140)( 46,139)( 47,138)
( 48,137)( 49,136)( 50,135)( 51,134)( 52,133)( 53,158)( 54,157)( 55,169)
( 56,168)( 57,167)( 58,166)( 59,165)( 60,164)( 61,163)( 62,162)( 63,161)
( 64,160)( 65,159)( 66,171)( 67,170)( 68,182)( 69,181)( 70,180)( 71,179)
( 72,178)( 73,177)( 74,176)( 75,175)( 76,174)( 77,173)( 78,172)( 79,197)
( 80,196)( 81,208)( 82,207)( 83,206)( 84,205)( 85,204)( 86,203)( 87,202)
( 88,201)( 89,200)( 90,199)( 91,198)( 92,184)( 93,183)( 94,195)( 95,194)
( 96,193)( 97,192)( 98,191)( 99,190)(100,189)(101,188)(102,187)(103,186)
(104,185);
s2 := Sym(210)!( 27, 40)( 28, 41)( 29, 42)( 30, 43)( 31, 44)( 32, 45)( 33, 46)
( 34, 47)( 35, 48)( 36, 49)( 37, 50)( 38, 51)( 39, 52)( 53, 66)( 54, 67)
( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)
( 63, 76)( 64, 77)( 65, 78)(105,131)(106,132)(107,133)(108,134)(109,135)
(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)
(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)
(126,152)(127,153)(128,154)(129,155)(130,156)(157,196)(158,197)(159,198)
(160,199)(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)
(168,207)(169,208)(170,183)(171,184)(172,185)(173,186)(174,187)(175,188)
(176,189)(177,190)(178,191)(179,192)(180,193)(181,194)(182,195);
s3 := Sym(210)!(209,210);
poly := sub<Sym(210)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope