include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,104}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,104}*1664b
if this polytope has a name.
Group : SmallGroup(1664,13836)
Rank : 4
Schlafli Type : {2,4,104}
Number of vertices, edges, etc : 2, 4, 208, 104
Order of s0s1s2s3 : 104
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,52}*832
4-fold quotients : {2,2,52}*416, {2,4,26}*416
8-fold quotients : {2,2,26}*208
13-fold quotients : {2,4,8}*128b
16-fold quotients : {2,2,13}*104
26-fold quotients : {2,4,4}*64
52-fold quotients : {2,2,4}*32, {2,4,2}*32
104-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)
( 63, 76)( 64, 77)( 65, 78)( 66, 79)( 67, 80)( 81, 94)( 82, 95)( 83, 96)
( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)( 91,104)
( 92,105)( 93,106)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)
(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)
(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)
(129,155)(130,156)(131,157)(132,158)(159,198)(160,199)(161,200)(162,201)
(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)(169,208)(170,209)
(171,210)(172,185)(173,186)(174,187)(175,188)(176,189)(177,190)(178,191)
(179,192)(180,193)(181,194)(182,195)(183,196)(184,197);;
s2 := ( 3,107)( 4,119)( 5,118)( 6,117)( 7,116)( 8,115)( 9,114)( 10,113)
( 11,112)( 12,111)( 13,110)( 14,109)( 15,108)( 16,120)( 17,132)( 18,131)
( 19,130)( 20,129)( 21,128)( 22,127)( 23,126)( 24,125)( 25,124)( 26,123)
( 27,122)( 28,121)( 29,133)( 30,145)( 31,144)( 32,143)( 33,142)( 34,141)
( 35,140)( 36,139)( 37,138)( 38,137)( 39,136)( 40,135)( 41,134)( 42,146)
( 43,158)( 44,157)( 45,156)( 46,155)( 47,154)( 48,153)( 49,152)( 50,151)
( 51,150)( 52,149)( 53,148)( 54,147)( 55,172)( 56,184)( 57,183)( 58,182)
( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)( 65,175)( 66,174)
( 67,173)( 68,159)( 69,171)( 70,170)( 71,169)( 72,168)( 73,167)( 74,166)
( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,160)( 81,198)( 82,210)
( 83,209)( 84,208)( 85,207)( 86,206)( 87,205)( 88,204)( 89,203)( 90,202)
( 91,201)( 92,200)( 93,199)( 94,185)( 95,197)( 96,196)( 97,195)( 98,194)
( 99,193)(100,192)(101,191)(102,190)(103,189)(104,188)(105,187)(106,186);;
s3 := ( 3, 4)( 5, 15)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 16, 17)( 18, 28)
( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 43)( 30, 42)( 31, 54)( 32, 53)
( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 41, 44)( 55, 69)( 56, 68)( 57, 80)( 58, 79)( 59, 78)( 60, 77)( 61, 76)
( 62, 75)( 63, 74)( 64, 73)( 65, 72)( 66, 71)( 67, 70)( 81, 82)( 83, 93)
( 84, 92)( 85, 91)( 86, 90)( 87, 89)( 94, 95)( 96,106)( 97,105)( 98,104)
( 99,103)(100,102)(107,160)(108,159)(109,171)(110,170)(111,169)(112,168)
(113,167)(114,166)(115,165)(116,164)(117,163)(118,162)(119,161)(120,173)
(121,172)(122,184)(123,183)(124,182)(125,181)(126,180)(127,179)(128,178)
(129,177)(130,176)(131,175)(132,174)(133,199)(134,198)(135,210)(136,209)
(137,208)(138,207)(139,206)(140,205)(141,204)(142,203)(143,202)(144,201)
(145,200)(146,186)(147,185)(148,197)(149,196)(150,195)(151,194)(152,193)
(153,192)(154,191)(155,190)(156,189)(157,188)(158,187);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(210)!(1,2);
s1 := Sym(210)!( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)
( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 66, 79)( 67, 80)( 81, 94)( 82, 95)
( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)
( 91,104)( 92,105)( 93,106)(107,133)(108,134)(109,135)(110,136)(111,137)
(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)
(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)
(128,154)(129,155)(130,156)(131,157)(132,158)(159,198)(160,199)(161,200)
(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)(169,208)
(170,209)(171,210)(172,185)(173,186)(174,187)(175,188)(176,189)(177,190)
(178,191)(179,192)(180,193)(181,194)(182,195)(183,196)(184,197);
s2 := Sym(210)!( 3,107)( 4,119)( 5,118)( 6,117)( 7,116)( 8,115)( 9,114)
( 10,113)( 11,112)( 12,111)( 13,110)( 14,109)( 15,108)( 16,120)( 17,132)
( 18,131)( 19,130)( 20,129)( 21,128)( 22,127)( 23,126)( 24,125)( 25,124)
( 26,123)( 27,122)( 28,121)( 29,133)( 30,145)( 31,144)( 32,143)( 33,142)
( 34,141)( 35,140)( 36,139)( 37,138)( 38,137)( 39,136)( 40,135)( 41,134)
( 42,146)( 43,158)( 44,157)( 45,156)( 46,155)( 47,154)( 48,153)( 49,152)
( 50,151)( 51,150)( 52,149)( 53,148)( 54,147)( 55,172)( 56,184)( 57,183)
( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)( 65,175)
( 66,174)( 67,173)( 68,159)( 69,171)( 70,170)( 71,169)( 72,168)( 73,167)
( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,160)( 81,198)
( 82,210)( 83,209)( 84,208)( 85,207)( 86,206)( 87,205)( 88,204)( 89,203)
( 90,202)( 91,201)( 92,200)( 93,199)( 94,185)( 95,197)( 96,196)( 97,195)
( 98,194)( 99,193)(100,192)(101,191)(102,190)(103,189)(104,188)(105,187)
(106,186);
s3 := Sym(210)!( 3, 4)( 5, 15)( 6, 14)( 7, 13)( 8, 12)( 9, 11)( 16, 17)
( 18, 28)( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 43)( 30, 42)( 31, 54)
( 32, 53)( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)
( 40, 45)( 41, 44)( 55, 69)( 56, 68)( 57, 80)( 58, 79)( 59, 78)( 60, 77)
( 61, 76)( 62, 75)( 63, 74)( 64, 73)( 65, 72)( 66, 71)( 67, 70)( 81, 82)
( 83, 93)( 84, 92)( 85, 91)( 86, 90)( 87, 89)( 94, 95)( 96,106)( 97,105)
( 98,104)( 99,103)(100,102)(107,160)(108,159)(109,171)(110,170)(111,169)
(112,168)(113,167)(114,166)(115,165)(116,164)(117,163)(118,162)(119,161)
(120,173)(121,172)(122,184)(123,183)(124,182)(125,181)(126,180)(127,179)
(128,178)(129,177)(130,176)(131,175)(132,174)(133,199)(134,198)(135,210)
(136,209)(137,208)(138,207)(139,206)(140,205)(141,204)(142,203)(143,202)
(144,201)(145,200)(146,186)(147,185)(148,197)(149,196)(150,195)(151,194)
(152,193)(153,192)(154,191)(155,190)(156,189)(157,188)(158,187);
poly := sub<Sym(210)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2 >;
to this polytope