include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,104}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,104}*832b
if this polytope has a name.
Group : SmallGroup(832,374)
Rank : 3
Schlafli Type : {4,104}
Number of vertices, edges, etc : 4, 208, 104
Order of s0s1s2 : 104
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,104,2} of size 1664
Vertex Figure Of :
{2,4,104} of size 1664
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,52}*416
4-fold quotients : {2,52}*208, {4,26}*208
8-fold quotients : {2,26}*104
13-fold quotients : {4,8}*64b
16-fold quotients : {2,13}*52
26-fold quotients : {4,4}*32
52-fold quotients : {2,4}*16, {4,2}*16
104-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,104}*1664a, {8,104}*1664a, {8,104}*1664d
Permutation Representation (GAP) :
s0 := ( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)
( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)( 81, 94)
( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)
( 90,103)( 91,104)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)
(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)
(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)
(127,153)(128,154)(129,155)(130,156)(157,196)(158,197)(159,198)(160,199)
(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)
(169,208)(170,183)(171,184)(172,185)(173,186)(174,187)(175,188)(176,189)
(177,190)(178,191)(179,192)(180,193)(181,194)(182,195);;
s1 := ( 1,105)( 2,117)( 3,116)( 4,115)( 5,114)( 6,113)( 7,112)( 8,111)
( 9,110)( 10,109)( 11,108)( 12,107)( 13,106)( 14,118)( 15,130)( 16,129)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,124)( 22,123)( 23,122)( 24,121)
( 25,120)( 26,119)( 27,131)( 28,143)( 29,142)( 30,141)( 31,140)( 32,139)
( 33,138)( 34,137)( 35,136)( 36,135)( 37,134)( 38,133)( 39,132)( 40,144)
( 41,156)( 42,155)( 43,154)( 44,153)( 45,152)( 46,151)( 47,150)( 48,149)
( 49,148)( 50,147)( 51,146)( 52,145)( 53,170)( 54,182)( 55,181)( 56,180)
( 57,179)( 58,178)( 59,177)( 60,176)( 61,175)( 62,174)( 63,173)( 64,172)
( 65,171)( 66,157)( 67,169)( 68,168)( 69,167)( 70,166)( 71,165)( 72,164)
( 73,163)( 74,162)( 75,161)( 76,160)( 77,159)( 78,158)( 79,196)( 80,208)
( 81,207)( 82,206)( 83,205)( 84,204)( 85,203)( 86,202)( 87,201)( 88,200)
( 89,199)( 90,198)( 91,197)( 92,183)( 93,195)( 94,194)( 95,193)( 96,192)
( 97,191)( 98,190)( 99,189)(100,188)(101,187)(102,186)(103,185)(104,184);;
s2 := ( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 41)( 28, 40)( 29, 52)( 30, 51)
( 31, 50)( 32, 49)( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)
( 39, 42)( 53, 67)( 54, 66)( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)
( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 79, 80)( 81, 91)
( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)
( 97,101)( 98,100)(105,158)(106,157)(107,169)(108,168)(109,167)(110,166)
(111,165)(112,164)(113,163)(114,162)(115,161)(116,160)(117,159)(118,171)
(119,170)(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)
(127,175)(128,174)(129,173)(130,172)(131,197)(132,196)(133,208)(134,207)
(135,206)(136,205)(137,204)(138,203)(139,202)(140,201)(141,200)(142,199)
(143,198)(144,184)(145,183)(146,195)(147,194)(148,193)(149,192)(150,191)
(151,190)(152,189)(153,188)(154,187)(155,186)(156,185);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(208)!( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)
( 60, 73)( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)
( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)
( 89,102)( 90,103)( 91,104)(105,131)(106,132)(107,133)(108,134)(109,135)
(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)
(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)
(126,152)(127,153)(128,154)(129,155)(130,156)(157,196)(158,197)(159,198)
(160,199)(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)
(168,207)(169,208)(170,183)(171,184)(172,185)(173,186)(174,187)(175,188)
(176,189)(177,190)(178,191)(179,192)(180,193)(181,194)(182,195);
s1 := Sym(208)!( 1,105)( 2,117)( 3,116)( 4,115)( 5,114)( 6,113)( 7,112)
( 8,111)( 9,110)( 10,109)( 11,108)( 12,107)( 13,106)( 14,118)( 15,130)
( 16,129)( 17,128)( 18,127)( 19,126)( 20,125)( 21,124)( 22,123)( 23,122)
( 24,121)( 25,120)( 26,119)( 27,131)( 28,143)( 29,142)( 30,141)( 31,140)
( 32,139)( 33,138)( 34,137)( 35,136)( 36,135)( 37,134)( 38,133)( 39,132)
( 40,144)( 41,156)( 42,155)( 43,154)( 44,153)( 45,152)( 46,151)( 47,150)
( 48,149)( 49,148)( 50,147)( 51,146)( 52,145)( 53,170)( 54,182)( 55,181)
( 56,180)( 57,179)( 58,178)( 59,177)( 60,176)( 61,175)( 62,174)( 63,173)
( 64,172)( 65,171)( 66,157)( 67,169)( 68,168)( 69,167)( 70,166)( 71,165)
( 72,164)( 73,163)( 74,162)( 75,161)( 76,160)( 77,159)( 78,158)( 79,196)
( 80,208)( 81,207)( 82,206)( 83,205)( 84,204)( 85,203)( 86,202)( 87,201)
( 88,200)( 89,199)( 90,198)( 91,197)( 92,183)( 93,195)( 94,194)( 95,193)
( 96,192)( 97,191)( 98,190)( 99,189)(100,188)(101,187)(102,186)(103,185)
(104,184);
s2 := Sym(208)!( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 41)( 28, 40)( 29, 52)
( 30, 51)( 31, 50)( 32, 49)( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)
( 38, 43)( 39, 42)( 53, 67)( 54, 66)( 55, 78)( 56, 77)( 57, 76)( 58, 75)
( 59, 74)( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 79, 80)
( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)
( 96,102)( 97,101)( 98,100)(105,158)(106,157)(107,169)(108,168)(109,167)
(110,166)(111,165)(112,164)(113,163)(114,162)(115,161)(116,160)(117,159)
(118,171)(119,170)(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)
(126,176)(127,175)(128,174)(129,173)(130,172)(131,197)(132,196)(133,208)
(134,207)(135,206)(136,205)(137,204)(138,203)(139,202)(140,201)(141,200)
(142,199)(143,198)(144,184)(145,183)(146,195)(147,194)(148,193)(149,192)
(150,191)(151,190)(152,189)(153,188)(154,187)(155,186)(156,185);
poly := sub<Sym(208)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 >;
References : None.
to this polytope