include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,105,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,105,2}*1680
if this polytope has a name.
Group : SmallGroup(1680,971)
Rank : 4
Schlafli Type : {4,105,2}
Number of vertices, edges, etc : 4, 210, 105, 2
Order of s0s1s2s3 : 210
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,21,2}*336
7-fold quotients : {4,15,2}*240
35-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140);;
s1 := ( 2, 3)( 5, 25)( 6, 27)( 7, 26)( 8, 28)( 9, 21)( 10, 23)( 11, 22)
( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29,113)( 30,115)( 31,114)
( 32,116)( 33,137)( 34,139)( 35,138)( 36,140)( 37,133)( 38,135)( 39,134)
( 40,136)( 41,129)( 42,131)( 43,130)( 44,132)( 45,125)( 46,127)( 47,126)
( 48,128)( 49,121)( 50,123)( 51,122)( 52,124)( 53,117)( 54,119)( 55,118)
( 56,120)( 57, 85)( 58, 87)( 59, 86)( 60, 88)( 61,109)( 62,111)( 63,110)
( 64,112)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)( 70,103)( 71,102)
( 72,104)( 73, 97)( 74, 99)( 75, 98)( 76,100)( 77, 93)( 78, 95)( 79, 94)
( 80, 96)( 81, 89)( 82, 91)( 83, 90)( 84, 92);;
s2 := ( 1, 33)( 2, 36)( 3, 35)( 4, 34)( 5, 29)( 6, 32)( 7, 31)( 8, 30)
( 9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 49)( 14, 52)( 15, 51)( 16, 50)
( 17, 45)( 18, 48)( 19, 47)( 20, 46)( 21, 41)( 22, 44)( 23, 43)( 24, 42)
( 25, 37)( 26, 40)( 27, 39)( 28, 38)( 57,117)( 58,120)( 59,119)( 60,118)
( 61,113)( 62,116)( 63,115)( 64,114)( 65,137)( 66,140)( 67,139)( 68,138)
( 69,133)( 70,136)( 71,135)( 72,134)( 73,129)( 74,132)( 75,131)( 76,130)
( 77,125)( 78,128)( 79,127)( 80,126)( 81,121)( 82,124)( 83,123)( 84,122)
( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 93,109)( 94,112)( 95,111)( 96,110)
( 97,105)( 98,108)( 99,107)(100,106)(102,104);;
s3 := (141,142);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(142)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140);
s1 := Sym(142)!( 2, 3)( 5, 25)( 6, 27)( 7, 26)( 8, 28)( 9, 21)( 10, 23)
( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29,113)( 30,115)
( 31,114)( 32,116)( 33,137)( 34,139)( 35,138)( 36,140)( 37,133)( 38,135)
( 39,134)( 40,136)( 41,129)( 42,131)( 43,130)( 44,132)( 45,125)( 46,127)
( 47,126)( 48,128)( 49,121)( 50,123)( 51,122)( 52,124)( 53,117)( 54,119)
( 55,118)( 56,120)( 57, 85)( 58, 87)( 59, 86)( 60, 88)( 61,109)( 62,111)
( 63,110)( 64,112)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)( 70,103)
( 71,102)( 72,104)( 73, 97)( 74, 99)( 75, 98)( 76,100)( 77, 93)( 78, 95)
( 79, 94)( 80, 96)( 81, 89)( 82, 91)( 83, 90)( 84, 92);
s2 := Sym(142)!( 1, 33)( 2, 36)( 3, 35)( 4, 34)( 5, 29)( 6, 32)( 7, 31)
( 8, 30)( 9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 49)( 14, 52)( 15, 51)
( 16, 50)( 17, 45)( 18, 48)( 19, 47)( 20, 46)( 21, 41)( 22, 44)( 23, 43)
( 24, 42)( 25, 37)( 26, 40)( 27, 39)( 28, 38)( 57,117)( 58,120)( 59,119)
( 60,118)( 61,113)( 62,116)( 63,115)( 64,114)( 65,137)( 66,140)( 67,139)
( 68,138)( 69,133)( 70,136)( 71,135)( 72,134)( 73,129)( 74,132)( 75,131)
( 76,130)( 77,125)( 78,128)( 79,127)( 80,126)( 81,121)( 82,124)( 83,123)
( 84,122)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 93,109)( 94,112)( 95,111)
( 96,110)( 97,105)( 98,108)( 99,107)(100,106)(102,104);
s3 := Sym(142)!(141,142);
poly := sub<Sym(142)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope