Polytope of Type {2,424}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,424}*1696
if this polytope has a name.
Group : SmallGroup(1696,157)
Rank : 3
Schlafli Type : {2,424}
Number of vertices, edges, etc : 2, 424, 424
Order of s0s1s2 : 424
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,212}*848
   4-fold quotients : {2,106}*424
   8-fold quotients : {2,53}*212
   53-fold quotients : {2,8}*32
   106-fold quotients : {2,4}*16
   212-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 55)(  5, 54)(  6, 53)(  7, 52)(  8, 51)(  9, 50)( 10, 49)( 11, 48)
( 12, 47)( 13, 46)( 14, 45)( 15, 44)( 16, 43)( 17, 42)( 18, 41)( 19, 40)
( 20, 39)( 21, 38)( 22, 37)( 23, 36)( 24, 35)( 25, 34)( 26, 33)( 27, 32)
( 28, 31)( 29, 30)( 57,108)( 58,107)( 59,106)( 60,105)( 61,104)( 62,103)
( 63,102)( 64,101)( 65,100)( 66, 99)( 67, 98)( 68, 97)( 69, 96)( 70, 95)
( 71, 94)( 72, 93)( 73, 92)( 74, 91)( 75, 90)( 76, 89)( 77, 88)( 78, 87)
( 79, 86)( 80, 85)( 81, 84)( 82, 83)(109,162)(110,214)(111,213)(112,212)
(113,211)(114,210)(115,209)(116,208)(117,207)(118,206)(119,205)(120,204)
(121,203)(122,202)(123,201)(124,200)(125,199)(126,198)(127,197)(128,196)
(129,195)(130,194)(131,193)(132,192)(133,191)(134,190)(135,189)(136,188)
(137,187)(138,186)(139,185)(140,184)(141,183)(142,182)(143,181)(144,180)
(145,179)(146,178)(147,177)(148,176)(149,175)(150,174)(151,173)(152,172)
(153,171)(154,170)(155,169)(156,168)(157,167)(158,166)(159,165)(160,164)
(161,163)(215,321)(216,373)(217,372)(218,371)(219,370)(220,369)(221,368)
(222,367)(223,366)(224,365)(225,364)(226,363)(227,362)(228,361)(229,360)
(230,359)(231,358)(232,357)(233,356)(234,355)(235,354)(236,353)(237,352)
(238,351)(239,350)(240,349)(241,348)(242,347)(243,346)(244,345)(245,344)
(246,343)(247,342)(248,341)(249,340)(250,339)(251,338)(252,337)(253,336)
(254,335)(255,334)(256,333)(257,332)(258,331)(259,330)(260,329)(261,328)
(262,327)(263,326)(264,325)(265,324)(266,323)(267,322)(268,374)(269,426)
(270,425)(271,424)(272,423)(273,422)(274,421)(275,420)(276,419)(277,418)
(278,417)(279,416)(280,415)(281,414)(282,413)(283,412)(284,411)(285,410)
(286,409)(287,408)(288,407)(289,406)(290,405)(291,404)(292,403)(293,402)
(294,401)(295,400)(296,399)(297,398)(298,397)(299,396)(300,395)(301,394)
(302,393)(303,392)(304,391)(305,390)(306,389)(307,388)(308,387)(309,386)
(310,385)(311,384)(312,383)(313,382)(314,381)(315,380)(316,379)(317,378)
(318,377)(319,376)(320,375);;
s2 := (  3,216)(  4,215)(  5,267)(  6,266)(  7,265)(  8,264)(  9,263)( 10,262)
( 11,261)( 12,260)( 13,259)( 14,258)( 15,257)( 16,256)( 17,255)( 18,254)
( 19,253)( 20,252)( 21,251)( 22,250)( 23,249)( 24,248)( 25,247)( 26,246)
( 27,245)( 28,244)( 29,243)( 30,242)( 31,241)( 32,240)( 33,239)( 34,238)
( 35,237)( 36,236)( 37,235)( 38,234)( 39,233)( 40,232)( 41,231)( 42,230)
( 43,229)( 44,228)( 45,227)( 46,226)( 47,225)( 48,224)( 49,223)( 50,222)
( 51,221)( 52,220)( 53,219)( 54,218)( 55,217)( 56,269)( 57,268)( 58,320)
( 59,319)( 60,318)( 61,317)( 62,316)( 63,315)( 64,314)( 65,313)( 66,312)
( 67,311)( 68,310)( 69,309)( 70,308)( 71,307)( 72,306)( 73,305)( 74,304)
( 75,303)( 76,302)( 77,301)( 78,300)( 79,299)( 80,298)( 81,297)( 82,296)
( 83,295)( 84,294)( 85,293)( 86,292)( 87,291)( 88,290)( 89,289)( 90,288)
( 91,287)( 92,286)( 93,285)( 94,284)( 95,283)( 96,282)( 97,281)( 98,280)
( 99,279)(100,278)(101,277)(102,276)(103,275)(104,274)(105,273)(106,272)
(107,271)(108,270)(109,375)(110,374)(111,426)(112,425)(113,424)(114,423)
(115,422)(116,421)(117,420)(118,419)(119,418)(120,417)(121,416)(122,415)
(123,414)(124,413)(125,412)(126,411)(127,410)(128,409)(129,408)(130,407)
(131,406)(132,405)(133,404)(134,403)(135,402)(136,401)(137,400)(138,399)
(139,398)(140,397)(141,396)(142,395)(143,394)(144,393)(145,392)(146,391)
(147,390)(148,389)(149,388)(150,387)(151,386)(152,385)(153,384)(154,383)
(155,382)(156,381)(157,380)(158,379)(159,378)(160,377)(161,376)(162,322)
(163,321)(164,373)(165,372)(166,371)(167,370)(168,369)(169,368)(170,367)
(171,366)(172,365)(173,364)(174,363)(175,362)(176,361)(177,360)(178,359)
(179,358)(180,357)(181,356)(182,355)(183,354)(184,353)(185,352)(186,351)
(187,350)(188,349)(189,348)(190,347)(191,346)(192,345)(193,344)(194,343)
(195,342)(196,341)(197,340)(198,339)(199,338)(200,337)(201,336)(202,335)
(203,334)(204,333)(205,332)(206,331)(207,330)(208,329)(209,328)(210,327)
(211,326)(212,325)(213,324)(214,323);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(426)!(1,2);
s1 := Sym(426)!(  4, 55)(  5, 54)(  6, 53)(  7, 52)(  8, 51)(  9, 50)( 10, 49)
( 11, 48)( 12, 47)( 13, 46)( 14, 45)( 15, 44)( 16, 43)( 17, 42)( 18, 41)
( 19, 40)( 20, 39)( 21, 38)( 22, 37)( 23, 36)( 24, 35)( 25, 34)( 26, 33)
( 27, 32)( 28, 31)( 29, 30)( 57,108)( 58,107)( 59,106)( 60,105)( 61,104)
( 62,103)( 63,102)( 64,101)( 65,100)( 66, 99)( 67, 98)( 68, 97)( 69, 96)
( 70, 95)( 71, 94)( 72, 93)( 73, 92)( 74, 91)( 75, 90)( 76, 89)( 77, 88)
( 78, 87)( 79, 86)( 80, 85)( 81, 84)( 82, 83)(109,162)(110,214)(111,213)
(112,212)(113,211)(114,210)(115,209)(116,208)(117,207)(118,206)(119,205)
(120,204)(121,203)(122,202)(123,201)(124,200)(125,199)(126,198)(127,197)
(128,196)(129,195)(130,194)(131,193)(132,192)(133,191)(134,190)(135,189)
(136,188)(137,187)(138,186)(139,185)(140,184)(141,183)(142,182)(143,181)
(144,180)(145,179)(146,178)(147,177)(148,176)(149,175)(150,174)(151,173)
(152,172)(153,171)(154,170)(155,169)(156,168)(157,167)(158,166)(159,165)
(160,164)(161,163)(215,321)(216,373)(217,372)(218,371)(219,370)(220,369)
(221,368)(222,367)(223,366)(224,365)(225,364)(226,363)(227,362)(228,361)
(229,360)(230,359)(231,358)(232,357)(233,356)(234,355)(235,354)(236,353)
(237,352)(238,351)(239,350)(240,349)(241,348)(242,347)(243,346)(244,345)
(245,344)(246,343)(247,342)(248,341)(249,340)(250,339)(251,338)(252,337)
(253,336)(254,335)(255,334)(256,333)(257,332)(258,331)(259,330)(260,329)
(261,328)(262,327)(263,326)(264,325)(265,324)(266,323)(267,322)(268,374)
(269,426)(270,425)(271,424)(272,423)(273,422)(274,421)(275,420)(276,419)
(277,418)(278,417)(279,416)(280,415)(281,414)(282,413)(283,412)(284,411)
(285,410)(286,409)(287,408)(288,407)(289,406)(290,405)(291,404)(292,403)
(293,402)(294,401)(295,400)(296,399)(297,398)(298,397)(299,396)(300,395)
(301,394)(302,393)(303,392)(304,391)(305,390)(306,389)(307,388)(308,387)
(309,386)(310,385)(311,384)(312,383)(313,382)(314,381)(315,380)(316,379)
(317,378)(318,377)(319,376)(320,375);
s2 := Sym(426)!(  3,216)(  4,215)(  5,267)(  6,266)(  7,265)(  8,264)(  9,263)
( 10,262)( 11,261)( 12,260)( 13,259)( 14,258)( 15,257)( 16,256)( 17,255)
( 18,254)( 19,253)( 20,252)( 21,251)( 22,250)( 23,249)( 24,248)( 25,247)
( 26,246)( 27,245)( 28,244)( 29,243)( 30,242)( 31,241)( 32,240)( 33,239)
( 34,238)( 35,237)( 36,236)( 37,235)( 38,234)( 39,233)( 40,232)( 41,231)
( 42,230)( 43,229)( 44,228)( 45,227)( 46,226)( 47,225)( 48,224)( 49,223)
( 50,222)( 51,221)( 52,220)( 53,219)( 54,218)( 55,217)( 56,269)( 57,268)
( 58,320)( 59,319)( 60,318)( 61,317)( 62,316)( 63,315)( 64,314)( 65,313)
( 66,312)( 67,311)( 68,310)( 69,309)( 70,308)( 71,307)( 72,306)( 73,305)
( 74,304)( 75,303)( 76,302)( 77,301)( 78,300)( 79,299)( 80,298)( 81,297)
( 82,296)( 83,295)( 84,294)( 85,293)( 86,292)( 87,291)( 88,290)( 89,289)
( 90,288)( 91,287)( 92,286)( 93,285)( 94,284)( 95,283)( 96,282)( 97,281)
( 98,280)( 99,279)(100,278)(101,277)(102,276)(103,275)(104,274)(105,273)
(106,272)(107,271)(108,270)(109,375)(110,374)(111,426)(112,425)(113,424)
(114,423)(115,422)(116,421)(117,420)(118,419)(119,418)(120,417)(121,416)
(122,415)(123,414)(124,413)(125,412)(126,411)(127,410)(128,409)(129,408)
(130,407)(131,406)(132,405)(133,404)(134,403)(135,402)(136,401)(137,400)
(138,399)(139,398)(140,397)(141,396)(142,395)(143,394)(144,393)(145,392)
(146,391)(147,390)(148,389)(149,388)(150,387)(151,386)(152,385)(153,384)
(154,383)(155,382)(156,381)(157,380)(158,379)(159,378)(160,377)(161,376)
(162,322)(163,321)(164,373)(165,372)(166,371)(167,370)(168,369)(169,368)
(170,367)(171,366)(172,365)(173,364)(174,363)(175,362)(176,361)(177,360)
(178,359)(179,358)(180,357)(181,356)(182,355)(183,354)(184,353)(185,352)
(186,351)(187,350)(188,349)(189,348)(190,347)(191,346)(192,345)(193,344)
(194,343)(195,342)(196,341)(197,340)(198,339)(199,338)(200,337)(201,336)
(202,335)(203,334)(204,333)(205,332)(206,331)(207,330)(208,329)(209,328)
(210,327)(211,326)(212,325)(213,324)(214,323);
poly := sub<Sym(426)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope