include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {424,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {424,2}*1696
if this polytope has a name.
Group : SmallGroup(1696,157)
Rank : 3
Schlafli Type : {424,2}
Number of vertices, edges, etc : 424, 424, 2
Order of s0s1s2 : 424
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {212,2}*848
4-fold quotients : {106,2}*424
8-fold quotients : {53,2}*212
53-fold quotients : {8,2}*32
106-fold quotients : {4,2}*16
212-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 53)( 3, 52)( 4, 51)( 5, 50)( 6, 49)( 7, 48)( 8, 47)( 9, 46)
( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 41)( 15, 40)( 16, 39)( 17, 38)
( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)( 24, 31)( 25, 30)
( 26, 29)( 27, 28)( 55,106)( 56,105)( 57,104)( 58,103)( 59,102)( 60,101)
( 61,100)( 62, 99)( 63, 98)( 64, 97)( 65, 96)( 66, 95)( 67, 94)( 68, 93)
( 69, 92)( 70, 91)( 71, 90)( 72, 89)( 73, 88)( 74, 87)( 75, 86)( 76, 85)
( 77, 84)( 78, 83)( 79, 82)( 80, 81)(107,160)(108,212)(109,211)(110,210)
(111,209)(112,208)(113,207)(114,206)(115,205)(116,204)(117,203)(118,202)
(119,201)(120,200)(121,199)(122,198)(123,197)(124,196)(125,195)(126,194)
(127,193)(128,192)(129,191)(130,190)(131,189)(132,188)(133,187)(134,186)
(135,185)(136,184)(137,183)(138,182)(139,181)(140,180)(141,179)(142,178)
(143,177)(144,176)(145,175)(146,174)(147,173)(148,172)(149,171)(150,170)
(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)(158,162)
(159,161)(213,319)(214,371)(215,370)(216,369)(217,368)(218,367)(219,366)
(220,365)(221,364)(222,363)(223,362)(224,361)(225,360)(226,359)(227,358)
(228,357)(229,356)(230,355)(231,354)(232,353)(233,352)(234,351)(235,350)
(236,349)(237,348)(238,347)(239,346)(240,345)(241,344)(242,343)(243,342)
(244,341)(245,340)(246,339)(247,338)(248,337)(249,336)(250,335)(251,334)
(252,333)(253,332)(254,331)(255,330)(256,329)(257,328)(258,327)(259,326)
(260,325)(261,324)(262,323)(263,322)(264,321)(265,320)(266,372)(267,424)
(268,423)(269,422)(270,421)(271,420)(272,419)(273,418)(274,417)(275,416)
(276,415)(277,414)(278,413)(279,412)(280,411)(281,410)(282,409)(283,408)
(284,407)(285,406)(286,405)(287,404)(288,403)(289,402)(290,401)(291,400)
(292,399)(293,398)(294,397)(295,396)(296,395)(297,394)(298,393)(299,392)
(300,391)(301,390)(302,389)(303,388)(304,387)(305,386)(306,385)(307,384)
(308,383)(309,382)(310,381)(311,380)(312,379)(313,378)(314,377)(315,376)
(316,375)(317,374)(318,373);;
s1 := ( 1,214)( 2,213)( 3,265)( 4,264)( 5,263)( 6,262)( 7,261)( 8,260)
( 9,259)( 10,258)( 11,257)( 12,256)( 13,255)( 14,254)( 15,253)( 16,252)
( 17,251)( 18,250)( 19,249)( 20,248)( 21,247)( 22,246)( 23,245)( 24,244)
( 25,243)( 26,242)( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)( 32,236)
( 33,235)( 34,234)( 35,233)( 36,232)( 37,231)( 38,230)( 39,229)( 40,228)
( 41,227)( 42,226)( 43,225)( 44,224)( 45,223)( 46,222)( 47,221)( 48,220)
( 49,219)( 50,218)( 51,217)( 52,216)( 53,215)( 54,267)( 55,266)( 56,318)
( 57,317)( 58,316)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)( 64,310)
( 65,309)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,303)( 72,302)
( 73,301)( 74,300)( 75,299)( 76,298)( 77,297)( 78,296)( 79,295)( 80,294)
( 81,293)( 82,292)( 83,291)( 84,290)( 85,289)( 86,288)( 87,287)( 88,286)
( 89,285)( 90,284)( 91,283)( 92,282)( 93,281)( 94,280)( 95,279)( 96,278)
( 97,277)( 98,276)( 99,275)(100,274)(101,273)(102,272)(103,271)(104,270)
(105,269)(106,268)(107,373)(108,372)(109,424)(110,423)(111,422)(112,421)
(113,420)(114,419)(115,418)(116,417)(117,416)(118,415)(119,414)(120,413)
(121,412)(122,411)(123,410)(124,409)(125,408)(126,407)(127,406)(128,405)
(129,404)(130,403)(131,402)(132,401)(133,400)(134,399)(135,398)(136,397)
(137,396)(138,395)(139,394)(140,393)(141,392)(142,391)(143,390)(144,389)
(145,388)(146,387)(147,386)(148,385)(149,384)(150,383)(151,382)(152,381)
(153,380)(154,379)(155,378)(156,377)(157,376)(158,375)(159,374)(160,320)
(161,319)(162,371)(163,370)(164,369)(165,368)(166,367)(167,366)(168,365)
(169,364)(170,363)(171,362)(172,361)(173,360)(174,359)(175,358)(176,357)
(177,356)(178,355)(179,354)(180,353)(181,352)(182,351)(183,350)(184,349)
(185,348)(186,347)(187,346)(188,345)(189,344)(190,343)(191,342)(192,341)
(193,340)(194,339)(195,338)(196,337)(197,336)(198,335)(199,334)(200,333)
(201,332)(202,331)(203,330)(204,329)(205,328)(206,327)(207,326)(208,325)
(209,324)(210,323)(211,322)(212,321);;
s2 := (425,426);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(426)!( 2, 53)( 3, 52)( 4, 51)( 5, 50)( 6, 49)( 7, 48)( 8, 47)
( 9, 46)( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 41)( 15, 40)( 16, 39)
( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)( 24, 31)
( 25, 30)( 26, 29)( 27, 28)( 55,106)( 56,105)( 57,104)( 58,103)( 59,102)
( 60,101)( 61,100)( 62, 99)( 63, 98)( 64, 97)( 65, 96)( 66, 95)( 67, 94)
( 68, 93)( 69, 92)( 70, 91)( 71, 90)( 72, 89)( 73, 88)( 74, 87)( 75, 86)
( 76, 85)( 77, 84)( 78, 83)( 79, 82)( 80, 81)(107,160)(108,212)(109,211)
(110,210)(111,209)(112,208)(113,207)(114,206)(115,205)(116,204)(117,203)
(118,202)(119,201)(120,200)(121,199)(122,198)(123,197)(124,196)(125,195)
(126,194)(127,193)(128,192)(129,191)(130,190)(131,189)(132,188)(133,187)
(134,186)(135,185)(136,184)(137,183)(138,182)(139,181)(140,180)(141,179)
(142,178)(143,177)(144,176)(145,175)(146,174)(147,173)(148,172)(149,171)
(150,170)(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)
(158,162)(159,161)(213,319)(214,371)(215,370)(216,369)(217,368)(218,367)
(219,366)(220,365)(221,364)(222,363)(223,362)(224,361)(225,360)(226,359)
(227,358)(228,357)(229,356)(230,355)(231,354)(232,353)(233,352)(234,351)
(235,350)(236,349)(237,348)(238,347)(239,346)(240,345)(241,344)(242,343)
(243,342)(244,341)(245,340)(246,339)(247,338)(248,337)(249,336)(250,335)
(251,334)(252,333)(253,332)(254,331)(255,330)(256,329)(257,328)(258,327)
(259,326)(260,325)(261,324)(262,323)(263,322)(264,321)(265,320)(266,372)
(267,424)(268,423)(269,422)(270,421)(271,420)(272,419)(273,418)(274,417)
(275,416)(276,415)(277,414)(278,413)(279,412)(280,411)(281,410)(282,409)
(283,408)(284,407)(285,406)(286,405)(287,404)(288,403)(289,402)(290,401)
(291,400)(292,399)(293,398)(294,397)(295,396)(296,395)(297,394)(298,393)
(299,392)(300,391)(301,390)(302,389)(303,388)(304,387)(305,386)(306,385)
(307,384)(308,383)(309,382)(310,381)(311,380)(312,379)(313,378)(314,377)
(315,376)(316,375)(317,374)(318,373);
s1 := Sym(426)!( 1,214)( 2,213)( 3,265)( 4,264)( 5,263)( 6,262)( 7,261)
( 8,260)( 9,259)( 10,258)( 11,257)( 12,256)( 13,255)( 14,254)( 15,253)
( 16,252)( 17,251)( 18,250)( 19,249)( 20,248)( 21,247)( 22,246)( 23,245)
( 24,244)( 25,243)( 26,242)( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)
( 32,236)( 33,235)( 34,234)( 35,233)( 36,232)( 37,231)( 38,230)( 39,229)
( 40,228)( 41,227)( 42,226)( 43,225)( 44,224)( 45,223)( 46,222)( 47,221)
( 48,220)( 49,219)( 50,218)( 51,217)( 52,216)( 53,215)( 54,267)( 55,266)
( 56,318)( 57,317)( 58,316)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)
( 64,310)( 65,309)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,303)
( 72,302)( 73,301)( 74,300)( 75,299)( 76,298)( 77,297)( 78,296)( 79,295)
( 80,294)( 81,293)( 82,292)( 83,291)( 84,290)( 85,289)( 86,288)( 87,287)
( 88,286)( 89,285)( 90,284)( 91,283)( 92,282)( 93,281)( 94,280)( 95,279)
( 96,278)( 97,277)( 98,276)( 99,275)(100,274)(101,273)(102,272)(103,271)
(104,270)(105,269)(106,268)(107,373)(108,372)(109,424)(110,423)(111,422)
(112,421)(113,420)(114,419)(115,418)(116,417)(117,416)(118,415)(119,414)
(120,413)(121,412)(122,411)(123,410)(124,409)(125,408)(126,407)(127,406)
(128,405)(129,404)(130,403)(131,402)(132,401)(133,400)(134,399)(135,398)
(136,397)(137,396)(138,395)(139,394)(140,393)(141,392)(142,391)(143,390)
(144,389)(145,388)(146,387)(147,386)(148,385)(149,384)(150,383)(151,382)
(152,381)(153,380)(154,379)(155,378)(156,377)(157,376)(158,375)(159,374)
(160,320)(161,319)(162,371)(163,370)(164,369)(165,368)(166,367)(167,366)
(168,365)(169,364)(170,363)(171,362)(172,361)(173,360)(174,359)(175,358)
(176,357)(177,356)(178,355)(179,354)(180,353)(181,352)(182,351)(183,350)
(184,349)(185,348)(186,347)(187,346)(188,345)(189,344)(190,343)(191,342)
(192,341)(193,340)(194,339)(195,338)(196,337)(197,336)(198,335)(199,334)
(200,333)(201,332)(202,331)(203,330)(204,329)(205,328)(206,327)(207,326)
(208,325)(209,324)(210,323)(211,322)(212,321);
s2 := Sym(426)!(425,426);
poly := sub<Sym(426)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope