include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,428}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,428}*1712
if this polytope has a name.
Group : SmallGroup(1712,36)
Rank : 3
Schlafli Type : {2,428}
Number of vertices, edges, etc : 2, 428, 428
Order of s0s1s2 : 428
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,214}*856
4-fold quotients : {2,107}*428
107-fold quotients : {2,4}*16
214-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,109)( 5,108)( 6,107)( 7,106)( 8,105)( 9,104)( 10,103)( 11,102)
( 12,101)( 13,100)( 14, 99)( 15, 98)( 16, 97)( 17, 96)( 18, 95)( 19, 94)
( 20, 93)( 21, 92)( 22, 91)( 23, 90)( 24, 89)( 25, 88)( 26, 87)( 27, 86)
( 28, 85)( 29, 84)( 30, 83)( 31, 82)( 32, 81)( 33, 80)( 34, 79)( 35, 78)
( 36, 77)( 37, 76)( 38, 75)( 39, 74)( 40, 73)( 41, 72)( 42, 71)( 43, 70)
( 44, 69)( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)( 51, 62)
( 52, 61)( 53, 60)( 54, 59)( 55, 58)( 56, 57)(111,216)(112,215)(113,214)
(114,213)(115,212)(116,211)(117,210)(118,209)(119,208)(120,207)(121,206)
(122,205)(123,204)(124,203)(125,202)(126,201)(127,200)(128,199)(129,198)
(130,197)(131,196)(132,195)(133,194)(134,193)(135,192)(136,191)(137,190)
(138,189)(139,188)(140,187)(141,186)(142,185)(143,184)(144,183)(145,182)
(146,181)(147,180)(148,179)(149,178)(150,177)(151,176)(152,175)(153,174)
(154,173)(155,172)(156,171)(157,170)(158,169)(159,168)(160,167)(161,166)
(162,165)(163,164)(217,324)(218,430)(219,429)(220,428)(221,427)(222,426)
(223,425)(224,424)(225,423)(226,422)(227,421)(228,420)(229,419)(230,418)
(231,417)(232,416)(233,415)(234,414)(235,413)(236,412)(237,411)(238,410)
(239,409)(240,408)(241,407)(242,406)(243,405)(244,404)(245,403)(246,402)
(247,401)(248,400)(249,399)(250,398)(251,397)(252,396)(253,395)(254,394)
(255,393)(256,392)(257,391)(258,390)(259,389)(260,388)(261,387)(262,386)
(263,385)(264,384)(265,383)(266,382)(267,381)(268,380)(269,379)(270,378)
(271,377)(272,376)(273,375)(274,374)(275,373)(276,372)(277,371)(278,370)
(279,369)(280,368)(281,367)(282,366)(283,365)(284,364)(285,363)(286,362)
(287,361)(288,360)(289,359)(290,358)(291,357)(292,356)(293,355)(294,354)
(295,353)(296,352)(297,351)(298,350)(299,349)(300,348)(301,347)(302,346)
(303,345)(304,344)(305,343)(306,342)(307,341)(308,340)(309,339)(310,338)
(311,337)(312,336)(313,335)(314,334)(315,333)(316,332)(317,331)(318,330)
(319,329)(320,328)(321,327)(322,326)(323,325);;
s2 := ( 3,218)( 4,217)( 5,323)( 6,322)( 7,321)( 8,320)( 9,319)( 10,318)
( 11,317)( 12,316)( 13,315)( 14,314)( 15,313)( 16,312)( 17,311)( 18,310)
( 19,309)( 20,308)( 21,307)( 22,306)( 23,305)( 24,304)( 25,303)( 26,302)
( 27,301)( 28,300)( 29,299)( 30,298)( 31,297)( 32,296)( 33,295)( 34,294)
( 35,293)( 36,292)( 37,291)( 38,290)( 39,289)( 40,288)( 41,287)( 42,286)
( 43,285)( 44,284)( 45,283)( 46,282)( 47,281)( 48,280)( 49,279)( 50,278)
( 51,277)( 52,276)( 53,275)( 54,274)( 55,273)( 56,272)( 57,271)( 58,270)
( 59,269)( 60,268)( 61,267)( 62,266)( 63,265)( 64,264)( 65,263)( 66,262)
( 67,261)( 68,260)( 69,259)( 70,258)( 71,257)( 72,256)( 73,255)( 74,254)
( 75,253)( 76,252)( 77,251)( 78,250)( 79,249)( 80,248)( 81,247)( 82,246)
( 83,245)( 84,244)( 85,243)( 86,242)( 87,241)( 88,240)( 89,239)( 90,238)
( 91,237)( 92,236)( 93,235)( 94,234)( 95,233)( 96,232)( 97,231)( 98,230)
( 99,229)(100,228)(101,227)(102,226)(103,225)(104,224)(105,223)(106,222)
(107,221)(108,220)(109,219)(110,325)(111,324)(112,430)(113,429)(114,428)
(115,427)(116,426)(117,425)(118,424)(119,423)(120,422)(121,421)(122,420)
(123,419)(124,418)(125,417)(126,416)(127,415)(128,414)(129,413)(130,412)
(131,411)(132,410)(133,409)(134,408)(135,407)(136,406)(137,405)(138,404)
(139,403)(140,402)(141,401)(142,400)(143,399)(144,398)(145,397)(146,396)
(147,395)(148,394)(149,393)(150,392)(151,391)(152,390)(153,389)(154,388)
(155,387)(156,386)(157,385)(158,384)(159,383)(160,382)(161,381)(162,380)
(163,379)(164,378)(165,377)(166,376)(167,375)(168,374)(169,373)(170,372)
(171,371)(172,370)(173,369)(174,368)(175,367)(176,366)(177,365)(178,364)
(179,363)(180,362)(181,361)(182,360)(183,359)(184,358)(185,357)(186,356)
(187,355)(188,354)(189,353)(190,352)(191,351)(192,350)(193,349)(194,348)
(195,347)(196,346)(197,345)(198,344)(199,343)(200,342)(201,341)(202,340)
(203,339)(204,338)(205,337)(206,336)(207,335)(208,334)(209,333)(210,332)
(211,331)(212,330)(213,329)(214,328)(215,327)(216,326);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(430)!(1,2);
s1 := Sym(430)!( 4,109)( 5,108)( 6,107)( 7,106)( 8,105)( 9,104)( 10,103)
( 11,102)( 12,101)( 13,100)( 14, 99)( 15, 98)( 16, 97)( 17, 96)( 18, 95)
( 19, 94)( 20, 93)( 21, 92)( 22, 91)( 23, 90)( 24, 89)( 25, 88)( 26, 87)
( 27, 86)( 28, 85)( 29, 84)( 30, 83)( 31, 82)( 32, 81)( 33, 80)( 34, 79)
( 35, 78)( 36, 77)( 37, 76)( 38, 75)( 39, 74)( 40, 73)( 41, 72)( 42, 71)
( 43, 70)( 44, 69)( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)
( 51, 62)( 52, 61)( 53, 60)( 54, 59)( 55, 58)( 56, 57)(111,216)(112,215)
(113,214)(114,213)(115,212)(116,211)(117,210)(118,209)(119,208)(120,207)
(121,206)(122,205)(123,204)(124,203)(125,202)(126,201)(127,200)(128,199)
(129,198)(130,197)(131,196)(132,195)(133,194)(134,193)(135,192)(136,191)
(137,190)(138,189)(139,188)(140,187)(141,186)(142,185)(143,184)(144,183)
(145,182)(146,181)(147,180)(148,179)(149,178)(150,177)(151,176)(152,175)
(153,174)(154,173)(155,172)(156,171)(157,170)(158,169)(159,168)(160,167)
(161,166)(162,165)(163,164)(217,324)(218,430)(219,429)(220,428)(221,427)
(222,426)(223,425)(224,424)(225,423)(226,422)(227,421)(228,420)(229,419)
(230,418)(231,417)(232,416)(233,415)(234,414)(235,413)(236,412)(237,411)
(238,410)(239,409)(240,408)(241,407)(242,406)(243,405)(244,404)(245,403)
(246,402)(247,401)(248,400)(249,399)(250,398)(251,397)(252,396)(253,395)
(254,394)(255,393)(256,392)(257,391)(258,390)(259,389)(260,388)(261,387)
(262,386)(263,385)(264,384)(265,383)(266,382)(267,381)(268,380)(269,379)
(270,378)(271,377)(272,376)(273,375)(274,374)(275,373)(276,372)(277,371)
(278,370)(279,369)(280,368)(281,367)(282,366)(283,365)(284,364)(285,363)
(286,362)(287,361)(288,360)(289,359)(290,358)(291,357)(292,356)(293,355)
(294,354)(295,353)(296,352)(297,351)(298,350)(299,349)(300,348)(301,347)
(302,346)(303,345)(304,344)(305,343)(306,342)(307,341)(308,340)(309,339)
(310,338)(311,337)(312,336)(313,335)(314,334)(315,333)(316,332)(317,331)
(318,330)(319,329)(320,328)(321,327)(322,326)(323,325);
s2 := Sym(430)!( 3,218)( 4,217)( 5,323)( 6,322)( 7,321)( 8,320)( 9,319)
( 10,318)( 11,317)( 12,316)( 13,315)( 14,314)( 15,313)( 16,312)( 17,311)
( 18,310)( 19,309)( 20,308)( 21,307)( 22,306)( 23,305)( 24,304)( 25,303)
( 26,302)( 27,301)( 28,300)( 29,299)( 30,298)( 31,297)( 32,296)( 33,295)
( 34,294)( 35,293)( 36,292)( 37,291)( 38,290)( 39,289)( 40,288)( 41,287)
( 42,286)( 43,285)( 44,284)( 45,283)( 46,282)( 47,281)( 48,280)( 49,279)
( 50,278)( 51,277)( 52,276)( 53,275)( 54,274)( 55,273)( 56,272)( 57,271)
( 58,270)( 59,269)( 60,268)( 61,267)( 62,266)( 63,265)( 64,264)( 65,263)
( 66,262)( 67,261)( 68,260)( 69,259)( 70,258)( 71,257)( 72,256)( 73,255)
( 74,254)( 75,253)( 76,252)( 77,251)( 78,250)( 79,249)( 80,248)( 81,247)
( 82,246)( 83,245)( 84,244)( 85,243)( 86,242)( 87,241)( 88,240)( 89,239)
( 90,238)( 91,237)( 92,236)( 93,235)( 94,234)( 95,233)( 96,232)( 97,231)
( 98,230)( 99,229)(100,228)(101,227)(102,226)(103,225)(104,224)(105,223)
(106,222)(107,221)(108,220)(109,219)(110,325)(111,324)(112,430)(113,429)
(114,428)(115,427)(116,426)(117,425)(118,424)(119,423)(120,422)(121,421)
(122,420)(123,419)(124,418)(125,417)(126,416)(127,415)(128,414)(129,413)
(130,412)(131,411)(132,410)(133,409)(134,408)(135,407)(136,406)(137,405)
(138,404)(139,403)(140,402)(141,401)(142,400)(143,399)(144,398)(145,397)
(146,396)(147,395)(148,394)(149,393)(150,392)(151,391)(152,390)(153,389)
(154,388)(155,387)(156,386)(157,385)(158,384)(159,383)(160,382)(161,381)
(162,380)(163,379)(164,378)(165,377)(166,376)(167,375)(168,374)(169,373)
(170,372)(171,371)(172,370)(173,369)(174,368)(175,367)(176,366)(177,365)
(178,364)(179,363)(180,362)(181,361)(182,360)(183,359)(184,358)(185,357)
(186,356)(187,355)(188,354)(189,353)(190,352)(191,351)(192,350)(193,349)
(194,348)(195,347)(196,346)(197,345)(198,344)(199,343)(200,342)(201,341)
(202,340)(203,339)(204,338)(205,337)(206,336)(207,335)(208,334)(209,333)
(210,332)(211,331)(212,330)(213,329)(214,328)(215,327)(216,326);
poly := sub<Sym(430)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope