include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {428}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {428}*856
Also Known As : 428-gon, {428}. if this polytope has another name.
Group : SmallGroup(856,5)
Rank : 2
Schlafli Type : {428}
Number of vertices, edges, etc : 428, 428
Order of s0s1 : 428
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{428,2} of size 1712
Vertex Figure Of :
{2,428} of size 1712
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {214}*428
4-fold quotients : {107}*214
107-fold quotients : {4}*8
214-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {856}*1712
Permutation Representation (GAP) :
s0 := ( 2,107)( 3,106)( 4,105)( 5,104)( 6,103)( 7,102)( 8,101)( 9,100)
( 10, 99)( 11, 98)( 12, 97)( 13, 96)( 14, 95)( 15, 94)( 16, 93)( 17, 92)
( 18, 91)( 19, 90)( 20, 89)( 21, 88)( 22, 87)( 23, 86)( 24, 85)( 25, 84)
( 26, 83)( 27, 82)( 28, 81)( 29, 80)( 30, 79)( 31, 78)( 32, 77)( 33, 76)
( 34, 75)( 35, 74)( 36, 73)( 37, 72)( 38, 71)( 39, 70)( 40, 69)( 41, 68)
( 42, 67)( 43, 66)( 44, 65)( 45, 64)( 46, 63)( 47, 62)( 48, 61)( 49, 60)
( 50, 59)( 51, 58)( 52, 57)( 53, 56)( 54, 55)(109,214)(110,213)(111,212)
(112,211)(113,210)(114,209)(115,208)(116,207)(117,206)(118,205)(119,204)
(120,203)(121,202)(122,201)(123,200)(124,199)(125,198)(126,197)(127,196)
(128,195)(129,194)(130,193)(131,192)(132,191)(133,190)(134,189)(135,188)
(136,187)(137,186)(138,185)(139,184)(140,183)(141,182)(142,181)(143,180)
(144,179)(145,178)(146,177)(147,176)(148,175)(149,174)(150,173)(151,172)
(152,171)(153,170)(154,169)(155,168)(156,167)(157,166)(158,165)(159,164)
(160,163)(161,162)(215,322)(216,428)(217,427)(218,426)(219,425)(220,424)
(221,423)(222,422)(223,421)(224,420)(225,419)(226,418)(227,417)(228,416)
(229,415)(230,414)(231,413)(232,412)(233,411)(234,410)(235,409)(236,408)
(237,407)(238,406)(239,405)(240,404)(241,403)(242,402)(243,401)(244,400)
(245,399)(246,398)(247,397)(248,396)(249,395)(250,394)(251,393)(252,392)
(253,391)(254,390)(255,389)(256,388)(257,387)(258,386)(259,385)(260,384)
(261,383)(262,382)(263,381)(264,380)(265,379)(266,378)(267,377)(268,376)
(269,375)(270,374)(271,373)(272,372)(273,371)(274,370)(275,369)(276,368)
(277,367)(278,366)(279,365)(280,364)(281,363)(282,362)(283,361)(284,360)
(285,359)(286,358)(287,357)(288,356)(289,355)(290,354)(291,353)(292,352)
(293,351)(294,350)(295,349)(296,348)(297,347)(298,346)(299,345)(300,344)
(301,343)(302,342)(303,341)(304,340)(305,339)(306,338)(307,337)(308,336)
(309,335)(310,334)(311,333)(312,332)(313,331)(314,330)(315,329)(316,328)
(317,327)(318,326)(319,325)(320,324)(321,323);;
s1 := ( 1,216)( 2,215)( 3,321)( 4,320)( 5,319)( 6,318)( 7,317)( 8,316)
( 9,315)( 10,314)( 11,313)( 12,312)( 13,311)( 14,310)( 15,309)( 16,308)
( 17,307)( 18,306)( 19,305)( 20,304)( 21,303)( 22,302)( 23,301)( 24,300)
( 25,299)( 26,298)( 27,297)( 28,296)( 29,295)( 30,294)( 31,293)( 32,292)
( 33,291)( 34,290)( 35,289)( 36,288)( 37,287)( 38,286)( 39,285)( 40,284)
( 41,283)( 42,282)( 43,281)( 44,280)( 45,279)( 46,278)( 47,277)( 48,276)
( 49,275)( 50,274)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)( 56,268)
( 57,267)( 58,266)( 59,265)( 60,264)( 61,263)( 62,262)( 63,261)( 64,260)
( 65,259)( 66,258)( 67,257)( 68,256)( 69,255)( 70,254)( 71,253)( 72,252)
( 73,251)( 74,250)( 75,249)( 76,248)( 77,247)( 78,246)( 79,245)( 80,244)
( 81,243)( 82,242)( 83,241)( 84,240)( 85,239)( 86,238)( 87,237)( 88,236)
( 89,235)( 90,234)( 91,233)( 92,232)( 93,231)( 94,230)( 95,229)( 96,228)
( 97,227)( 98,226)( 99,225)(100,224)(101,223)(102,222)(103,221)(104,220)
(105,219)(106,218)(107,217)(108,323)(109,322)(110,428)(111,427)(112,426)
(113,425)(114,424)(115,423)(116,422)(117,421)(118,420)(119,419)(120,418)
(121,417)(122,416)(123,415)(124,414)(125,413)(126,412)(127,411)(128,410)
(129,409)(130,408)(131,407)(132,406)(133,405)(134,404)(135,403)(136,402)
(137,401)(138,400)(139,399)(140,398)(141,397)(142,396)(143,395)(144,394)
(145,393)(146,392)(147,391)(148,390)(149,389)(150,388)(151,387)(152,386)
(153,385)(154,384)(155,383)(156,382)(157,381)(158,380)(159,379)(160,378)
(161,377)(162,376)(163,375)(164,374)(165,373)(166,372)(167,371)(168,370)
(169,369)(170,368)(171,367)(172,366)(173,365)(174,364)(175,363)(176,362)
(177,361)(178,360)(179,359)(180,358)(181,357)(182,356)(183,355)(184,354)
(185,353)(186,352)(187,351)(188,350)(189,349)(190,348)(191,347)(192,346)
(193,345)(194,344)(195,343)(196,342)(197,341)(198,340)(199,339)(200,338)
(201,337)(202,336)(203,335)(204,334)(205,333)(206,332)(207,331)(208,330)
(209,329)(210,328)(211,327)(212,326)(213,325)(214,324);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(428)!( 2,107)( 3,106)( 4,105)( 5,104)( 6,103)( 7,102)( 8,101)
( 9,100)( 10, 99)( 11, 98)( 12, 97)( 13, 96)( 14, 95)( 15, 94)( 16, 93)
( 17, 92)( 18, 91)( 19, 90)( 20, 89)( 21, 88)( 22, 87)( 23, 86)( 24, 85)
( 25, 84)( 26, 83)( 27, 82)( 28, 81)( 29, 80)( 30, 79)( 31, 78)( 32, 77)
( 33, 76)( 34, 75)( 35, 74)( 36, 73)( 37, 72)( 38, 71)( 39, 70)( 40, 69)
( 41, 68)( 42, 67)( 43, 66)( 44, 65)( 45, 64)( 46, 63)( 47, 62)( 48, 61)
( 49, 60)( 50, 59)( 51, 58)( 52, 57)( 53, 56)( 54, 55)(109,214)(110,213)
(111,212)(112,211)(113,210)(114,209)(115,208)(116,207)(117,206)(118,205)
(119,204)(120,203)(121,202)(122,201)(123,200)(124,199)(125,198)(126,197)
(127,196)(128,195)(129,194)(130,193)(131,192)(132,191)(133,190)(134,189)
(135,188)(136,187)(137,186)(138,185)(139,184)(140,183)(141,182)(142,181)
(143,180)(144,179)(145,178)(146,177)(147,176)(148,175)(149,174)(150,173)
(151,172)(152,171)(153,170)(154,169)(155,168)(156,167)(157,166)(158,165)
(159,164)(160,163)(161,162)(215,322)(216,428)(217,427)(218,426)(219,425)
(220,424)(221,423)(222,422)(223,421)(224,420)(225,419)(226,418)(227,417)
(228,416)(229,415)(230,414)(231,413)(232,412)(233,411)(234,410)(235,409)
(236,408)(237,407)(238,406)(239,405)(240,404)(241,403)(242,402)(243,401)
(244,400)(245,399)(246,398)(247,397)(248,396)(249,395)(250,394)(251,393)
(252,392)(253,391)(254,390)(255,389)(256,388)(257,387)(258,386)(259,385)
(260,384)(261,383)(262,382)(263,381)(264,380)(265,379)(266,378)(267,377)
(268,376)(269,375)(270,374)(271,373)(272,372)(273,371)(274,370)(275,369)
(276,368)(277,367)(278,366)(279,365)(280,364)(281,363)(282,362)(283,361)
(284,360)(285,359)(286,358)(287,357)(288,356)(289,355)(290,354)(291,353)
(292,352)(293,351)(294,350)(295,349)(296,348)(297,347)(298,346)(299,345)
(300,344)(301,343)(302,342)(303,341)(304,340)(305,339)(306,338)(307,337)
(308,336)(309,335)(310,334)(311,333)(312,332)(313,331)(314,330)(315,329)
(316,328)(317,327)(318,326)(319,325)(320,324)(321,323);
s1 := Sym(428)!( 1,216)( 2,215)( 3,321)( 4,320)( 5,319)( 6,318)( 7,317)
( 8,316)( 9,315)( 10,314)( 11,313)( 12,312)( 13,311)( 14,310)( 15,309)
( 16,308)( 17,307)( 18,306)( 19,305)( 20,304)( 21,303)( 22,302)( 23,301)
( 24,300)( 25,299)( 26,298)( 27,297)( 28,296)( 29,295)( 30,294)( 31,293)
( 32,292)( 33,291)( 34,290)( 35,289)( 36,288)( 37,287)( 38,286)( 39,285)
( 40,284)( 41,283)( 42,282)( 43,281)( 44,280)( 45,279)( 46,278)( 47,277)
( 48,276)( 49,275)( 50,274)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)
( 56,268)( 57,267)( 58,266)( 59,265)( 60,264)( 61,263)( 62,262)( 63,261)
( 64,260)( 65,259)( 66,258)( 67,257)( 68,256)( 69,255)( 70,254)( 71,253)
( 72,252)( 73,251)( 74,250)( 75,249)( 76,248)( 77,247)( 78,246)( 79,245)
( 80,244)( 81,243)( 82,242)( 83,241)( 84,240)( 85,239)( 86,238)( 87,237)
( 88,236)( 89,235)( 90,234)( 91,233)( 92,232)( 93,231)( 94,230)( 95,229)
( 96,228)( 97,227)( 98,226)( 99,225)(100,224)(101,223)(102,222)(103,221)
(104,220)(105,219)(106,218)(107,217)(108,323)(109,322)(110,428)(111,427)
(112,426)(113,425)(114,424)(115,423)(116,422)(117,421)(118,420)(119,419)
(120,418)(121,417)(122,416)(123,415)(124,414)(125,413)(126,412)(127,411)
(128,410)(129,409)(130,408)(131,407)(132,406)(133,405)(134,404)(135,403)
(136,402)(137,401)(138,400)(139,399)(140,398)(141,397)(142,396)(143,395)
(144,394)(145,393)(146,392)(147,391)(148,390)(149,389)(150,388)(151,387)
(152,386)(153,385)(154,384)(155,383)(156,382)(157,381)(158,380)(159,379)
(160,378)(161,377)(162,376)(163,375)(164,374)(165,373)(166,372)(167,371)
(168,370)(169,369)(170,368)(171,367)(172,366)(173,365)(174,364)(175,363)
(176,362)(177,361)(178,360)(179,359)(180,358)(181,357)(182,356)(183,355)
(184,354)(185,353)(186,352)(187,351)(188,350)(189,349)(190,348)(191,347)
(192,346)(193,345)(194,344)(195,343)(196,342)(197,341)(198,340)(199,339)
(200,338)(201,337)(202,336)(203,335)(204,334)(205,333)(206,332)(207,331)
(208,330)(209,329)(210,328)(211,327)(212,326)(213,325)(214,324);
poly := sub<Sym(428)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope