include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,54,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,54,2,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,11400)
Rank : 5
Schlafli Type : {4,54,2,2}
Number of vertices, edges, etc : 4, 108, 54, 2, 2
Order of s0s1s2s3s4 : 108
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,54,2,2}*864
3-fold quotients : {4,18,2,2}*576a
4-fold quotients : {2,27,2,2}*432
6-fold quotients : {2,18,2,2}*288
9-fold quotients : {4,6,2,2}*192a
12-fold quotients : {2,9,2,2}*144
18-fold quotients : {2,6,2,2}*96
27-fold quotients : {4,2,2,2}*64
36-fold quotients : {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)( 62, 89)
( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)( 70, 97)
( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)( 78,105)
( 79,106)( 80,107)( 81,108);;
s1 := ( 1, 55)( 2, 57)( 3, 56)( 4, 62)( 5, 61)( 6, 63)( 7, 59)( 8, 58)
( 9, 60)( 10, 76)( 11, 78)( 12, 77)( 13, 73)( 14, 75)( 15, 74)( 16, 80)
( 17, 79)( 18, 81)( 19, 67)( 20, 69)( 21, 68)( 22, 64)( 23, 66)( 24, 65)
( 25, 71)( 26, 70)( 27, 72)( 28, 82)( 29, 84)( 30, 83)( 31, 89)( 32, 88)
( 33, 90)( 34, 86)( 35, 85)( 36, 87)( 37,103)( 38,105)( 39,104)( 40,100)
( 41,102)( 42,101)( 43,107)( 44,106)( 45,108)( 46, 94)( 47, 96)( 48, 95)
( 49, 91)( 50, 93)( 51, 92)( 52, 98)( 53, 97)( 54, 99);;
s2 := ( 1, 10)( 2, 12)( 3, 11)( 4, 17)( 5, 16)( 6, 18)( 7, 14)( 8, 13)
( 9, 15)( 19, 22)( 20, 24)( 21, 23)( 25, 26)( 28, 37)( 29, 39)( 30, 38)
( 31, 44)( 32, 43)( 33, 45)( 34, 41)( 35, 40)( 36, 42)( 46, 49)( 47, 51)
( 48, 50)( 52, 53)( 55, 64)( 56, 66)( 57, 65)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73, 76)( 74, 78)( 75, 77)( 79, 80)( 82, 91)
( 83, 93)( 84, 92)( 85, 98)( 86, 97)( 87, 99)( 88, 95)( 89, 94)( 90, 96)
(100,103)(101,105)(102,104)(106,107);;
s3 := (109,110);;
s4 := (111,112);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)
( 62, 89)( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)
( 70, 97)( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)
( 78,105)( 79,106)( 80,107)( 81,108);
s1 := Sym(112)!( 1, 55)( 2, 57)( 3, 56)( 4, 62)( 5, 61)( 6, 63)( 7, 59)
( 8, 58)( 9, 60)( 10, 76)( 11, 78)( 12, 77)( 13, 73)( 14, 75)( 15, 74)
( 16, 80)( 17, 79)( 18, 81)( 19, 67)( 20, 69)( 21, 68)( 22, 64)( 23, 66)
( 24, 65)( 25, 71)( 26, 70)( 27, 72)( 28, 82)( 29, 84)( 30, 83)( 31, 89)
( 32, 88)( 33, 90)( 34, 86)( 35, 85)( 36, 87)( 37,103)( 38,105)( 39,104)
( 40,100)( 41,102)( 42,101)( 43,107)( 44,106)( 45,108)( 46, 94)( 47, 96)
( 48, 95)( 49, 91)( 50, 93)( 51, 92)( 52, 98)( 53, 97)( 54, 99);
s2 := Sym(112)!( 1, 10)( 2, 12)( 3, 11)( 4, 17)( 5, 16)( 6, 18)( 7, 14)
( 8, 13)( 9, 15)( 19, 22)( 20, 24)( 21, 23)( 25, 26)( 28, 37)( 29, 39)
( 30, 38)( 31, 44)( 32, 43)( 33, 45)( 34, 41)( 35, 40)( 36, 42)( 46, 49)
( 47, 51)( 48, 50)( 52, 53)( 55, 64)( 56, 66)( 57, 65)( 58, 71)( 59, 70)
( 60, 72)( 61, 68)( 62, 67)( 63, 69)( 73, 76)( 74, 78)( 75, 77)( 79, 80)
( 82, 91)( 83, 93)( 84, 92)( 85, 98)( 86, 97)( 87, 99)( 88, 95)( 89, 94)
( 90, 96)(100,103)(101,105)(102,104)(106,107);
s3 := Sym(112)!(109,110);
s4 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope