include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,9}*1728
if this polytope has a name.
Group : SmallGroup(1728,12249)
Rank : 3
Schlafli Type : {6,9}
Number of vertices, edges, etc : 96, 432, 144
Order of s0s1s2 : 72
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,3}*576
4-fold quotients : {6,9}*432
9-fold quotients : {6,3}*192
12-fold quotients : {6,3}*144
16-fold quotients : {6,9}*108
36-fold quotients : {6,3}*48
48-fold quotients : {2,9}*36, {6,3}*36
72-fold quotients : {3,3}*24
144-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 14)( 10, 13)( 11, 15)( 12, 16)( 19, 20)( 21, 22)
( 25, 30)( 26, 29)( 27, 31)( 28, 32)( 35, 36)( 37, 38)( 41, 46)( 42, 45)
( 43, 47)( 44, 48)( 51, 52)( 53, 54)( 57, 62)( 58, 61)( 59, 63)( 60, 64)
( 67, 68)( 69, 70)( 73, 78)( 74, 77)( 75, 79)( 76, 80)( 83, 84)( 85, 86)
( 89, 94)( 90, 93)( 91, 95)( 92, 96)( 99,100)(101,102)(105,110)(106,109)
(107,111)(108,112)(115,116)(117,118)(121,126)(122,125)(123,127)(124,128)
(131,132)(133,134)(137,142)(138,141)(139,143)(140,144);;
s1 := ( 2, 4)( 5, 13)( 6, 16)( 7, 15)( 8, 14)( 9, 11)( 17, 33)( 18, 36)
( 19, 35)( 20, 34)( 21, 45)( 22, 48)( 23, 47)( 24, 46)( 25, 43)( 26, 42)
( 27, 41)( 28, 44)( 29, 37)( 30, 40)( 31, 39)( 32, 38)( 49,129)( 50,132)
( 51,131)( 52,130)( 53,141)( 54,144)( 55,143)( 56,142)( 57,139)( 58,138)
( 59,137)( 60,140)( 61,133)( 62,136)( 63,135)( 64,134)( 65,113)( 66,116)
( 67,115)( 68,114)( 69,125)( 70,128)( 71,127)( 72,126)( 73,123)( 74,122)
( 75,121)( 76,124)( 77,117)( 78,120)( 79,119)( 80,118)( 81, 97)( 82,100)
( 83, 99)( 84, 98)( 85,109)( 86,112)( 87,111)( 88,110)( 89,107)( 90,106)
( 91,105)( 92,108)( 93,101)( 94,104)( 95,103)( 96,102);;
s2 := ( 1, 55)( 2, 56)( 3, 54)( 4, 53)( 5, 52)( 6, 51)( 7, 49)( 8, 50)
( 9, 58)( 10, 57)( 11, 59)( 12, 60)( 13, 62)( 14, 61)( 15, 63)( 16, 64)
( 17, 87)( 18, 88)( 19, 86)( 20, 85)( 21, 84)( 22, 83)( 23, 81)( 24, 82)
( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 94)( 30, 93)( 31, 95)( 32, 96)
( 33, 71)( 34, 72)( 35, 70)( 36, 69)( 37, 68)( 38, 67)( 39, 65)( 40, 66)
( 41, 74)( 42, 73)( 43, 75)( 44, 76)( 45, 78)( 46, 77)( 47, 79)( 48, 80)
( 97,135)( 98,136)( 99,134)(100,133)(101,132)(102,131)(103,129)(104,130)
(105,138)(106,137)(107,139)(108,140)(109,142)(110,141)(111,143)(112,144)
(113,119)(114,120)(115,118)(116,117)(121,122)(125,126);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 3, 4)( 5, 6)( 9, 14)( 10, 13)( 11, 15)( 12, 16)( 19, 20)
( 21, 22)( 25, 30)( 26, 29)( 27, 31)( 28, 32)( 35, 36)( 37, 38)( 41, 46)
( 42, 45)( 43, 47)( 44, 48)( 51, 52)( 53, 54)( 57, 62)( 58, 61)( 59, 63)
( 60, 64)( 67, 68)( 69, 70)( 73, 78)( 74, 77)( 75, 79)( 76, 80)( 83, 84)
( 85, 86)( 89, 94)( 90, 93)( 91, 95)( 92, 96)( 99,100)(101,102)(105,110)
(106,109)(107,111)(108,112)(115,116)(117,118)(121,126)(122,125)(123,127)
(124,128)(131,132)(133,134)(137,142)(138,141)(139,143)(140,144);
s1 := Sym(144)!( 2, 4)( 5, 13)( 6, 16)( 7, 15)( 8, 14)( 9, 11)( 17, 33)
( 18, 36)( 19, 35)( 20, 34)( 21, 45)( 22, 48)( 23, 47)( 24, 46)( 25, 43)
( 26, 42)( 27, 41)( 28, 44)( 29, 37)( 30, 40)( 31, 39)( 32, 38)( 49,129)
( 50,132)( 51,131)( 52,130)( 53,141)( 54,144)( 55,143)( 56,142)( 57,139)
( 58,138)( 59,137)( 60,140)( 61,133)( 62,136)( 63,135)( 64,134)( 65,113)
( 66,116)( 67,115)( 68,114)( 69,125)( 70,128)( 71,127)( 72,126)( 73,123)
( 74,122)( 75,121)( 76,124)( 77,117)( 78,120)( 79,119)( 80,118)( 81, 97)
( 82,100)( 83, 99)( 84, 98)( 85,109)( 86,112)( 87,111)( 88,110)( 89,107)
( 90,106)( 91,105)( 92,108)( 93,101)( 94,104)( 95,103)( 96,102);
s2 := Sym(144)!( 1, 55)( 2, 56)( 3, 54)( 4, 53)( 5, 52)( 6, 51)( 7, 49)
( 8, 50)( 9, 58)( 10, 57)( 11, 59)( 12, 60)( 13, 62)( 14, 61)( 15, 63)
( 16, 64)( 17, 87)( 18, 88)( 19, 86)( 20, 85)( 21, 84)( 22, 83)( 23, 81)
( 24, 82)( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 94)( 30, 93)( 31, 95)
( 32, 96)( 33, 71)( 34, 72)( 35, 70)( 36, 69)( 37, 68)( 38, 67)( 39, 65)
( 40, 66)( 41, 74)( 42, 73)( 43, 75)( 44, 76)( 45, 78)( 46, 77)( 47, 79)
( 48, 80)( 97,135)( 98,136)( 99,134)(100,133)(101,132)(102,131)(103,129)
(104,130)(105,138)(106,137)(107,139)(108,140)(109,142)(110,141)(111,143)
(112,144)(113,119)(114,120)(115,118)(116,117)(121,122)(125,126);
poly := sub<Sym(144)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope