include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,3}*1728
Also Known As : {24,3}6. if this polytope has another name.
Group : SmallGroup(1728,12317)
Rank : 3
Schlafli Type : {24,3}
Number of vertices, edges, etc : 288, 432, 36
Order of s0s1s2 : 6
Order of s0s1s2s1 : 24
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {24,3}*576
4-fold quotients : {12,3}*432
9-fold quotients : {8,3}*192
12-fold quotients : {12,3}*144
16-fold quotients : {6,3}*108
36-fold quotients : {4,3}*48
48-fold quotients : {6,3}*36
72-fold quotients : {4,3}*24
144-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 14)( 6, 13)( 7, 16)( 8, 15)
( 17, 41)( 18, 42)( 19, 43)( 20, 44)( 21, 46)( 22, 45)( 23, 48)( 24, 47)
( 25, 33)( 26, 34)( 27, 35)( 28, 36)( 29, 38)( 30, 37)( 31, 40)( 32, 39)
( 49,105)( 50,106)( 51,107)( 52,108)( 53,110)( 54,109)( 55,112)( 56,111)
( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61,102)( 62,101)( 63,104)( 64,103)
( 65,137)( 66,138)( 67,139)( 68,140)( 69,142)( 70,141)( 71,144)( 72,143)
( 73,129)( 74,130)( 75,131)( 76,132)( 77,134)( 78,133)( 79,136)( 80,135)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,126)( 86,125)( 87,128)( 88,127)
( 89,113)( 90,114)( 91,115)( 92,116)( 93,118)( 94,117)( 95,120)( 96,119);;
s1 := ( 1, 49)( 2, 50)( 3, 52)( 4, 51)( 5, 53)( 6, 54)( 7, 56)( 8, 55)
( 9, 63)( 10, 64)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 57)( 16, 58)
( 17, 65)( 18, 66)( 19, 68)( 20, 67)( 21, 69)( 22, 70)( 23, 72)( 24, 71)
( 25, 79)( 26, 80)( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 73)( 32, 74)
( 33, 81)( 34, 82)( 35, 84)( 36, 83)( 37, 85)( 38, 86)( 39, 88)( 40, 87)
( 41, 95)( 42, 96)( 43, 94)( 44, 93)( 45, 92)( 46, 91)( 47, 89)( 48, 90)
( 99,100)(103,104)(105,111)(106,112)(107,110)(108,109)(115,116)(119,120)
(121,127)(122,128)(123,126)(124,125)(131,132)(135,136)(137,143)(138,144)
(139,142)(140,141);;
s2 := ( 1, 9)( 2, 12)( 3, 11)( 4, 10)( 5, 7)( 14, 16)( 17, 25)( 18, 28)
( 19, 27)( 20, 26)( 21, 23)( 30, 32)( 33, 41)( 34, 44)( 35, 43)( 36, 42)
( 37, 39)( 46, 48)( 49,137)( 50,140)( 51,139)( 52,138)( 53,135)( 54,134)
( 55,133)( 56,136)( 57,129)( 58,132)( 59,131)( 60,130)( 61,141)( 62,144)
( 63,143)( 64,142)( 65,105)( 66,108)( 67,107)( 68,106)( 69,103)( 70,102)
( 71,101)( 72,104)( 73, 97)( 74,100)( 75, 99)( 76, 98)( 77,109)( 78,112)
( 79,111)( 80,110)( 81,121)( 82,124)( 83,123)( 84,122)( 85,119)( 86,118)
( 87,117)( 88,120)( 89,113)( 90,116)( 91,115)( 92,114)( 93,125)( 94,128)
( 95,127)( 96,126);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 14)( 6, 13)( 7, 16)
( 8, 15)( 17, 41)( 18, 42)( 19, 43)( 20, 44)( 21, 46)( 22, 45)( 23, 48)
( 24, 47)( 25, 33)( 26, 34)( 27, 35)( 28, 36)( 29, 38)( 30, 37)( 31, 40)
( 32, 39)( 49,105)( 50,106)( 51,107)( 52,108)( 53,110)( 54,109)( 55,112)
( 56,111)( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61,102)( 62,101)( 63,104)
( 64,103)( 65,137)( 66,138)( 67,139)( 68,140)( 69,142)( 70,141)( 71,144)
( 72,143)( 73,129)( 74,130)( 75,131)( 76,132)( 77,134)( 78,133)( 79,136)
( 80,135)( 81,121)( 82,122)( 83,123)( 84,124)( 85,126)( 86,125)( 87,128)
( 88,127)( 89,113)( 90,114)( 91,115)( 92,116)( 93,118)( 94,117)( 95,120)
( 96,119);
s1 := Sym(144)!( 1, 49)( 2, 50)( 3, 52)( 4, 51)( 5, 53)( 6, 54)( 7, 56)
( 8, 55)( 9, 63)( 10, 64)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 57)
( 16, 58)( 17, 65)( 18, 66)( 19, 68)( 20, 67)( 21, 69)( 22, 70)( 23, 72)
( 24, 71)( 25, 79)( 26, 80)( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 73)
( 32, 74)( 33, 81)( 34, 82)( 35, 84)( 36, 83)( 37, 85)( 38, 86)( 39, 88)
( 40, 87)( 41, 95)( 42, 96)( 43, 94)( 44, 93)( 45, 92)( 46, 91)( 47, 89)
( 48, 90)( 99,100)(103,104)(105,111)(106,112)(107,110)(108,109)(115,116)
(119,120)(121,127)(122,128)(123,126)(124,125)(131,132)(135,136)(137,143)
(138,144)(139,142)(140,141);
s2 := Sym(144)!( 1, 9)( 2, 12)( 3, 11)( 4, 10)( 5, 7)( 14, 16)( 17, 25)
( 18, 28)( 19, 27)( 20, 26)( 21, 23)( 30, 32)( 33, 41)( 34, 44)( 35, 43)
( 36, 42)( 37, 39)( 46, 48)( 49,137)( 50,140)( 51,139)( 52,138)( 53,135)
( 54,134)( 55,133)( 56,136)( 57,129)( 58,132)( 59,131)( 60,130)( 61,141)
( 62,144)( 63,143)( 64,142)( 65,105)( 66,108)( 67,107)( 68,106)( 69,103)
( 70,102)( 71,101)( 72,104)( 73, 97)( 74,100)( 75, 99)( 76, 98)( 77,109)
( 78,112)( 79,111)( 80,110)( 81,121)( 82,124)( 83,123)( 84,122)( 85,119)
( 86,118)( 87,117)( 88,120)( 89,113)( 90,116)( 91,115)( 92,114)( 93,125)
( 94,128)( 95,127)( 96,126);
poly := sub<Sym(144)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope