include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,12}*1728l
if this polytope has a name.
Group : SmallGroup(1728,12713)
Rank : 3
Schlafli Type : {24,12}
Number of vertices, edges, etc : 72, 432, 36
Order of s0s1s2 : 24
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*864g
3-fold quotients : {24,4}*576b
4-fold quotients : {6,12}*432e
6-fold quotients : {12,4}*288
8-fold quotients : {6,12}*216a
12-fold quotients : {6,4}*144
24-fold quotients : {6,4}*72
27-fold quotients : {8,4}*64b
54-fold quotients : {4,4}*32
108-fold quotients : {2,4}*16, {4,2}*16
216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,136)( 2,137)( 3,138)( 4,144)( 5,142)( 6,143)( 7,140)( 8,141)
( 9,139)( 10,156)( 11,154)( 12,155)( 13,161)( 14,162)( 15,160)( 16,157)
( 17,158)( 18,159)( 19,146)( 20,147)( 21,145)( 22,151)( 23,152)( 24,153)
( 25,150)( 26,148)( 27,149)( 28,109)( 29,110)( 30,111)( 31,117)( 32,115)
( 33,116)( 34,113)( 35,114)( 36,112)( 37,129)( 38,127)( 39,128)( 40,134)
( 41,135)( 42,133)( 43,130)( 44,131)( 45,132)( 46,119)( 47,120)( 48,118)
( 49,124)( 50,125)( 51,126)( 52,123)( 53,121)( 54,122)( 55,163)( 56,164)
( 57,165)( 58,171)( 59,169)( 60,170)( 61,167)( 62,168)( 63,166)( 64,183)
( 65,181)( 66,182)( 67,188)( 68,189)( 69,187)( 70,184)( 71,185)( 72,186)
( 73,173)( 74,174)( 75,172)( 76,178)( 77,179)( 78,180)( 79,177)( 80,175)
( 81,176)( 82,190)( 83,191)( 84,192)( 85,198)( 86,196)( 87,197)( 88,194)
( 89,195)( 90,193)( 91,210)( 92,208)( 93,209)( 94,215)( 95,216)( 96,214)
( 97,211)( 98,212)( 99,213)(100,200)(101,201)(102,199)(103,205)(104,206)
(105,207)(106,204)(107,202)(108,203);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 18)( 11, 17)( 12, 16)( 13, 15)
( 19, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 46, 48)( 49, 54)( 50, 53)( 51, 52)
( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)( 60, 83)( 61, 88)( 62, 90)
( 63, 89)( 64, 99)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)
( 71, 92)( 72, 91)( 73,102)( 74,101)( 75,100)( 76,108)( 77,107)( 78,106)
( 79,105)( 80,104)( 81,103)(109,193)(110,195)(111,194)(112,190)(113,192)
(114,191)(115,196)(116,198)(117,197)(118,207)(119,206)(120,205)(121,204)
(122,203)(123,202)(124,201)(125,200)(126,199)(127,210)(128,209)(129,208)
(130,216)(131,215)(132,214)(133,213)(134,212)(135,211)(136,166)(137,168)
(138,167)(139,163)(140,165)(141,164)(142,169)(143,171)(144,170)(145,180)
(146,179)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)(153,172)
(154,183)(155,182)(156,181)(157,189)(158,188)(159,187)(160,186)(161,185)
(162,184);;
s2 := ( 1, 2)( 4, 23)( 5, 22)( 6, 24)( 7, 16)( 8, 18)( 9, 17)( 10, 20)
( 11, 19)( 12, 21)( 13, 14)( 26, 27)( 28, 29)( 31, 50)( 32, 49)( 33, 51)
( 34, 43)( 35, 45)( 36, 44)( 37, 47)( 38, 46)( 39, 48)( 40, 41)( 53, 54)
( 55, 83)( 56, 82)( 57, 84)( 58,104)( 59,103)( 60,105)( 61, 97)( 62, 99)
( 63, 98)( 64,101)( 65,100)( 66,102)( 67, 95)( 68, 94)( 69, 96)( 70, 88)
( 71, 90)( 72, 89)( 73, 92)( 74, 91)( 75, 93)( 76, 86)( 77, 85)( 78, 87)
( 79,106)( 80,108)( 81,107)(109,110)(112,131)(113,130)(114,132)(115,124)
(116,126)(117,125)(118,128)(119,127)(120,129)(121,122)(134,135)(136,137)
(139,158)(140,157)(141,159)(142,151)(143,153)(144,152)(145,155)(146,154)
(147,156)(148,149)(161,162)(163,191)(164,190)(165,192)(166,212)(167,211)
(168,213)(169,205)(170,207)(171,206)(172,209)(173,208)(174,210)(175,203)
(176,202)(177,204)(178,196)(179,198)(180,197)(181,200)(182,199)(183,201)
(184,194)(185,193)(186,195)(187,214)(188,216)(189,215);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 1,136)( 2,137)( 3,138)( 4,144)( 5,142)( 6,143)( 7,140)
( 8,141)( 9,139)( 10,156)( 11,154)( 12,155)( 13,161)( 14,162)( 15,160)
( 16,157)( 17,158)( 18,159)( 19,146)( 20,147)( 21,145)( 22,151)( 23,152)
( 24,153)( 25,150)( 26,148)( 27,149)( 28,109)( 29,110)( 30,111)( 31,117)
( 32,115)( 33,116)( 34,113)( 35,114)( 36,112)( 37,129)( 38,127)( 39,128)
( 40,134)( 41,135)( 42,133)( 43,130)( 44,131)( 45,132)( 46,119)( 47,120)
( 48,118)( 49,124)( 50,125)( 51,126)( 52,123)( 53,121)( 54,122)( 55,163)
( 56,164)( 57,165)( 58,171)( 59,169)( 60,170)( 61,167)( 62,168)( 63,166)
( 64,183)( 65,181)( 66,182)( 67,188)( 68,189)( 69,187)( 70,184)( 71,185)
( 72,186)( 73,173)( 74,174)( 75,172)( 76,178)( 77,179)( 78,180)( 79,177)
( 80,175)( 81,176)( 82,190)( 83,191)( 84,192)( 85,198)( 86,196)( 87,197)
( 88,194)( 89,195)( 90,193)( 91,210)( 92,208)( 93,209)( 94,215)( 95,216)
( 96,214)( 97,211)( 98,212)( 99,213)(100,200)(101,201)(102,199)(103,205)
(104,206)(105,207)(106,204)(107,202)(108,203);
s1 := Sym(216)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 18)( 11, 17)( 12, 16)
( 13, 15)( 19, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 46, 48)( 49, 54)( 50, 53)
( 51, 52)( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)( 60, 83)( 61, 88)
( 62, 90)( 63, 89)( 64, 99)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)
( 70, 93)( 71, 92)( 72, 91)( 73,102)( 74,101)( 75,100)( 76,108)( 77,107)
( 78,106)( 79,105)( 80,104)( 81,103)(109,193)(110,195)(111,194)(112,190)
(113,192)(114,191)(115,196)(116,198)(117,197)(118,207)(119,206)(120,205)
(121,204)(122,203)(123,202)(124,201)(125,200)(126,199)(127,210)(128,209)
(129,208)(130,216)(131,215)(132,214)(133,213)(134,212)(135,211)(136,166)
(137,168)(138,167)(139,163)(140,165)(141,164)(142,169)(143,171)(144,170)
(145,180)(146,179)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)
(153,172)(154,183)(155,182)(156,181)(157,189)(158,188)(159,187)(160,186)
(161,185)(162,184);
s2 := Sym(216)!( 1, 2)( 4, 23)( 5, 22)( 6, 24)( 7, 16)( 8, 18)( 9, 17)
( 10, 20)( 11, 19)( 12, 21)( 13, 14)( 26, 27)( 28, 29)( 31, 50)( 32, 49)
( 33, 51)( 34, 43)( 35, 45)( 36, 44)( 37, 47)( 38, 46)( 39, 48)( 40, 41)
( 53, 54)( 55, 83)( 56, 82)( 57, 84)( 58,104)( 59,103)( 60,105)( 61, 97)
( 62, 99)( 63, 98)( 64,101)( 65,100)( 66,102)( 67, 95)( 68, 94)( 69, 96)
( 70, 88)( 71, 90)( 72, 89)( 73, 92)( 74, 91)( 75, 93)( 76, 86)( 77, 85)
( 78, 87)( 79,106)( 80,108)( 81,107)(109,110)(112,131)(113,130)(114,132)
(115,124)(116,126)(117,125)(118,128)(119,127)(120,129)(121,122)(134,135)
(136,137)(139,158)(140,157)(141,159)(142,151)(143,153)(144,152)(145,155)
(146,154)(147,156)(148,149)(161,162)(163,191)(164,190)(165,192)(166,212)
(167,211)(168,213)(169,205)(170,207)(171,206)(172,209)(173,208)(174,210)
(175,203)(176,202)(177,204)(178,196)(179,198)(180,197)(181,200)(182,199)
(183,201)(184,194)(185,193)(186,195)(187,214)(188,216)(189,215);
poly := sub<Sym(216)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope