include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,24}*1728l
if this polytope has a name.
Group : SmallGroup(1728,12713)
Rank : 3
Schlafli Type : {12,24}
Number of vertices, edges, etc : 36, 432, 72
Order of s0s1s2 : 24
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*864d
3-fold quotients : {4,24}*576b
4-fold quotients : {12,6}*432e
6-fold quotients : {4,12}*288
8-fold quotients : {12,6}*216b
12-fold quotients : {4,6}*144
24-fold quotients : {4,6}*72
27-fold quotients : {4,8}*64b
54-fold quotients : {4,4}*32
108-fold quotients : {2,4}*16, {4,2}*16
216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 22)( 5, 24)( 6, 23)( 7, 18)( 8, 17)( 9, 16)( 10, 19)
( 11, 21)( 12, 20)( 14, 15)( 25, 27)( 29, 30)( 31, 49)( 32, 51)( 33, 50)
( 34, 45)( 35, 44)( 36, 43)( 37, 46)( 38, 48)( 39, 47)( 41, 42)( 52, 54)
( 55, 82)( 56, 84)( 57, 83)( 58,103)( 59,105)( 60,104)( 61, 99)( 62, 98)
( 63, 97)( 64,100)( 65,102)( 66,101)( 67, 94)( 68, 96)( 69, 95)( 70, 90)
( 71, 89)( 72, 88)( 73, 91)( 74, 93)( 75, 92)( 76, 85)( 77, 87)( 78, 86)
( 79,108)( 80,107)( 81,106)(110,111)(112,130)(113,132)(114,131)(115,126)
(116,125)(117,124)(118,127)(119,129)(120,128)(122,123)(133,135)(137,138)
(139,157)(140,159)(141,158)(142,153)(143,152)(144,151)(145,154)(146,156)
(147,155)(149,150)(160,162)(163,190)(164,192)(165,191)(166,211)(167,213)
(168,212)(169,207)(170,206)(171,205)(172,208)(173,210)(174,209)(175,202)
(176,204)(177,203)(178,198)(179,197)(180,196)(181,199)(182,201)(183,200)
(184,193)(185,195)(186,194)(187,216)(188,215)(189,214);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 25)( 20, 27)( 21, 26)( 23, 24)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 52)( 47, 54)( 48, 53)( 50, 51)
( 55, 83)( 56, 82)( 57, 84)( 58, 89)( 59, 88)( 60, 90)( 61, 86)( 62, 85)
( 63, 87)( 64, 94)( 65, 96)( 66, 95)( 67, 91)( 68, 93)( 69, 92)( 70, 97)
( 71, 99)( 72, 98)( 73,106)( 74,108)( 75,107)( 76,103)( 77,105)( 78,104)
( 79,100)( 80,102)( 81,101)(109,191)(110,190)(111,192)(112,197)(113,196)
(114,198)(115,194)(116,193)(117,195)(118,202)(119,204)(120,203)(121,199)
(122,201)(123,200)(124,205)(125,207)(126,206)(127,214)(128,216)(129,215)
(130,211)(131,213)(132,212)(133,208)(134,210)(135,209)(136,164)(137,163)
(138,165)(139,170)(140,169)(141,171)(142,167)(143,166)(144,168)(145,175)
(146,177)(147,176)(148,172)(149,174)(150,173)(151,178)(152,180)(153,179)
(154,187)(155,189)(156,188)(157,184)(158,186)(159,185)(160,181)(161,183)
(162,182);;
s2 := ( 1,148)( 2,149)( 3,150)( 4,146)( 5,147)( 6,145)( 7,153)( 8,151)
( 9,152)( 10,141)( 11,139)( 12,140)( 13,136)( 14,137)( 15,138)( 16,143)
( 17,144)( 18,142)( 19,158)( 20,159)( 21,157)( 22,156)( 23,154)( 24,155)
( 25,160)( 26,161)( 27,162)( 28,121)( 29,122)( 30,123)( 31,119)( 32,120)
( 33,118)( 34,126)( 35,124)( 36,125)( 37,114)( 38,112)( 39,113)( 40,109)
( 41,110)( 42,111)( 43,116)( 44,117)( 45,115)( 46,131)( 47,132)( 48,130)
( 49,129)( 50,127)( 51,128)( 52,133)( 53,134)( 54,135)( 55,175)( 56,176)
( 57,177)( 58,173)( 59,174)( 60,172)( 61,180)( 62,178)( 63,179)( 64,168)
( 65,166)( 66,167)( 67,163)( 68,164)( 69,165)( 70,170)( 71,171)( 72,169)
( 73,185)( 74,186)( 75,184)( 76,183)( 77,181)( 78,182)( 79,187)( 80,188)
( 81,189)( 82,202)( 83,203)( 84,204)( 85,200)( 86,201)( 87,199)( 88,207)
( 89,205)( 90,206)( 91,195)( 92,193)( 93,194)( 94,190)( 95,191)( 96,192)
( 97,197)( 98,198)( 99,196)(100,212)(101,213)(102,211)(103,210)(104,208)
(105,209)(106,214)(107,215)(108,216);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 2, 3)( 4, 22)( 5, 24)( 6, 23)( 7, 18)( 8, 17)( 9, 16)
( 10, 19)( 11, 21)( 12, 20)( 14, 15)( 25, 27)( 29, 30)( 31, 49)( 32, 51)
( 33, 50)( 34, 45)( 35, 44)( 36, 43)( 37, 46)( 38, 48)( 39, 47)( 41, 42)
( 52, 54)( 55, 82)( 56, 84)( 57, 83)( 58,103)( 59,105)( 60,104)( 61, 99)
( 62, 98)( 63, 97)( 64,100)( 65,102)( 66,101)( 67, 94)( 68, 96)( 69, 95)
( 70, 90)( 71, 89)( 72, 88)( 73, 91)( 74, 93)( 75, 92)( 76, 85)( 77, 87)
( 78, 86)( 79,108)( 80,107)( 81,106)(110,111)(112,130)(113,132)(114,131)
(115,126)(116,125)(117,124)(118,127)(119,129)(120,128)(122,123)(133,135)
(137,138)(139,157)(140,159)(141,158)(142,153)(143,152)(144,151)(145,154)
(146,156)(147,155)(149,150)(160,162)(163,190)(164,192)(165,191)(166,211)
(167,213)(168,212)(169,207)(170,206)(171,205)(172,208)(173,210)(174,209)
(175,202)(176,204)(177,203)(178,198)(179,197)(180,196)(181,199)(182,201)
(183,200)(184,193)(185,195)(186,194)(187,216)(188,215)(189,214);
s1 := Sym(216)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 25)( 20, 27)( 21, 26)( 23, 24)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 52)( 47, 54)( 48, 53)
( 50, 51)( 55, 83)( 56, 82)( 57, 84)( 58, 89)( 59, 88)( 60, 90)( 61, 86)
( 62, 85)( 63, 87)( 64, 94)( 65, 96)( 66, 95)( 67, 91)( 68, 93)( 69, 92)
( 70, 97)( 71, 99)( 72, 98)( 73,106)( 74,108)( 75,107)( 76,103)( 77,105)
( 78,104)( 79,100)( 80,102)( 81,101)(109,191)(110,190)(111,192)(112,197)
(113,196)(114,198)(115,194)(116,193)(117,195)(118,202)(119,204)(120,203)
(121,199)(122,201)(123,200)(124,205)(125,207)(126,206)(127,214)(128,216)
(129,215)(130,211)(131,213)(132,212)(133,208)(134,210)(135,209)(136,164)
(137,163)(138,165)(139,170)(140,169)(141,171)(142,167)(143,166)(144,168)
(145,175)(146,177)(147,176)(148,172)(149,174)(150,173)(151,178)(152,180)
(153,179)(154,187)(155,189)(156,188)(157,184)(158,186)(159,185)(160,181)
(161,183)(162,182);
s2 := Sym(216)!( 1,148)( 2,149)( 3,150)( 4,146)( 5,147)( 6,145)( 7,153)
( 8,151)( 9,152)( 10,141)( 11,139)( 12,140)( 13,136)( 14,137)( 15,138)
( 16,143)( 17,144)( 18,142)( 19,158)( 20,159)( 21,157)( 22,156)( 23,154)
( 24,155)( 25,160)( 26,161)( 27,162)( 28,121)( 29,122)( 30,123)( 31,119)
( 32,120)( 33,118)( 34,126)( 35,124)( 36,125)( 37,114)( 38,112)( 39,113)
( 40,109)( 41,110)( 42,111)( 43,116)( 44,117)( 45,115)( 46,131)( 47,132)
( 48,130)( 49,129)( 50,127)( 51,128)( 52,133)( 53,134)( 54,135)( 55,175)
( 56,176)( 57,177)( 58,173)( 59,174)( 60,172)( 61,180)( 62,178)( 63,179)
( 64,168)( 65,166)( 66,167)( 67,163)( 68,164)( 69,165)( 70,170)( 71,171)
( 72,169)( 73,185)( 74,186)( 75,184)( 76,183)( 77,181)( 78,182)( 79,187)
( 80,188)( 81,189)( 82,202)( 83,203)( 84,204)( 85,200)( 86,201)( 87,199)
( 88,207)( 89,205)( 90,206)( 91,195)( 92,193)( 93,194)( 94,190)( 95,191)
( 96,192)( 97,197)( 98,198)( 99,196)(100,212)(101,213)(102,211)(103,210)
(104,208)(105,209)(106,214)(107,215)(108,216);
poly := sub<Sym(216)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope