include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,72}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,72}*1728a
if this polytope has a name.
Group : SmallGroup(1728,15813)
Rank : 4
Schlafli Type : {2,6,72}
Number of vertices, edges, etc : 2, 6, 216, 72
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,36}*864a
3-fold quotients : {2,2,72}*576, {2,6,24}*576a
4-fold quotients : {2,6,18}*432a
6-fold quotients : {2,2,36}*288, {2,6,12}*288a
9-fold quotients : {2,2,24}*192, {2,6,8}*192
12-fold quotients : {2,2,18}*144, {2,6,6}*144a
18-fold quotients : {2,2,12}*96, {2,6,4}*96a
24-fold quotients : {2,2,9}*72
27-fold quotients : {2,2,8}*64
36-fold quotients : {2,2,6}*48, {2,6,2}*48
54-fold quotients : {2,2,4}*32
72-fold quotients : {2,2,3}*24, {2,3,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)( 25, 28)
( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)( 51, 54)
( 52, 55)( 53, 56)( 60, 63)( 61, 64)( 62, 65)( 69, 72)( 70, 73)( 71, 74)
( 78, 81)( 79, 82)( 80, 83)( 87, 90)( 88, 91)( 89, 92)( 96, 99)( 97,100)
( 98,101)(105,108)(106,109)(107,110)(114,117)(115,118)(116,119)(123,126)
(124,127)(125,128)(132,135)(133,136)(134,137)(141,144)(142,145)(143,146)
(150,153)(151,154)(152,155)(159,162)(160,163)(161,164)(168,171)(169,172)
(170,173)(177,180)(178,181)(179,182)(186,189)(187,190)(188,191)(195,198)
(196,199)(197,200)(204,207)(205,208)(206,209)(213,216)(214,217)(215,218);;
s2 := ( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 26)( 13, 25)( 14, 24)( 15, 23)
( 16, 22)( 17, 21)( 18, 29)( 19, 28)( 20, 27)( 30, 33)( 31, 35)( 32, 34)
( 37, 38)( 39, 53)( 40, 52)( 41, 51)( 42, 50)( 43, 49)( 44, 48)( 45, 56)
( 46, 55)( 47, 54)( 57, 87)( 58, 89)( 59, 88)( 60, 84)( 61, 86)( 62, 85)
( 63, 90)( 64, 92)( 65, 91)( 66,107)( 67,106)( 68,105)( 69,104)( 70,103)
( 71,102)( 72,110)( 73,109)( 74,108)( 75, 98)( 76, 97)( 77, 96)( 78, 95)
( 79, 94)( 80, 93)( 81,101)( 82,100)( 83, 99)(111,168)(112,170)(113,169)
(114,165)(115,167)(116,166)(117,171)(118,173)(119,172)(120,188)(121,187)
(122,186)(123,185)(124,184)(125,183)(126,191)(127,190)(128,189)(129,179)
(130,178)(131,177)(132,176)(133,175)(134,174)(135,182)(136,181)(137,180)
(138,195)(139,197)(140,196)(141,192)(142,194)(143,193)(144,198)(145,200)
(146,199)(147,215)(148,214)(149,213)(150,212)(151,211)(152,210)(153,218)
(154,217)(155,216)(156,206)(157,205)(158,204)(159,203)(160,202)(161,201)
(162,209)(163,208)(164,207);;
s3 := ( 3,120)( 4,122)( 5,121)( 6,123)( 7,125)( 8,124)( 9,126)( 10,128)
( 11,127)( 12,111)( 13,113)( 14,112)( 15,114)( 16,116)( 17,115)( 18,117)
( 19,119)( 20,118)( 21,131)( 22,130)( 23,129)( 24,134)( 25,133)( 26,132)
( 27,137)( 28,136)( 29,135)( 30,147)( 31,149)( 32,148)( 33,150)( 34,152)
( 35,151)( 36,153)( 37,155)( 38,154)( 39,138)( 40,140)( 41,139)( 42,141)
( 43,143)( 44,142)( 45,144)( 46,146)( 47,145)( 48,158)( 49,157)( 50,156)
( 51,161)( 52,160)( 53,159)( 54,164)( 55,163)( 56,162)( 57,201)( 58,203)
( 59,202)( 60,204)( 61,206)( 62,205)( 63,207)( 64,209)( 65,208)( 66,192)
( 67,194)( 68,193)( 69,195)( 70,197)( 71,196)( 72,198)( 73,200)( 74,199)
( 75,212)( 76,211)( 77,210)( 78,215)( 79,214)( 80,213)( 81,218)( 82,217)
( 83,216)( 84,174)( 85,176)( 86,175)( 87,177)( 88,179)( 89,178)( 90,180)
( 91,182)( 92,181)( 93,165)( 94,167)( 95,166)( 96,168)( 97,170)( 98,169)
( 99,171)(100,173)(101,172)(102,185)(103,184)(104,183)(105,188)(106,187)
(107,186)(108,191)(109,190)(110,189);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!(1,2);
s1 := Sym(218)!( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)
( 25, 28)( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)
( 51, 54)( 52, 55)( 53, 56)( 60, 63)( 61, 64)( 62, 65)( 69, 72)( 70, 73)
( 71, 74)( 78, 81)( 79, 82)( 80, 83)( 87, 90)( 88, 91)( 89, 92)( 96, 99)
( 97,100)( 98,101)(105,108)(106,109)(107,110)(114,117)(115,118)(116,119)
(123,126)(124,127)(125,128)(132,135)(133,136)(134,137)(141,144)(142,145)
(143,146)(150,153)(151,154)(152,155)(159,162)(160,163)(161,164)(168,171)
(169,172)(170,173)(177,180)(178,181)(179,182)(186,189)(187,190)(188,191)
(195,198)(196,199)(197,200)(204,207)(205,208)(206,209)(213,216)(214,217)
(215,218);
s2 := Sym(218)!( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 26)( 13, 25)( 14, 24)
( 15, 23)( 16, 22)( 17, 21)( 18, 29)( 19, 28)( 20, 27)( 30, 33)( 31, 35)
( 32, 34)( 37, 38)( 39, 53)( 40, 52)( 41, 51)( 42, 50)( 43, 49)( 44, 48)
( 45, 56)( 46, 55)( 47, 54)( 57, 87)( 58, 89)( 59, 88)( 60, 84)( 61, 86)
( 62, 85)( 63, 90)( 64, 92)( 65, 91)( 66,107)( 67,106)( 68,105)( 69,104)
( 70,103)( 71,102)( 72,110)( 73,109)( 74,108)( 75, 98)( 76, 97)( 77, 96)
( 78, 95)( 79, 94)( 80, 93)( 81,101)( 82,100)( 83, 99)(111,168)(112,170)
(113,169)(114,165)(115,167)(116,166)(117,171)(118,173)(119,172)(120,188)
(121,187)(122,186)(123,185)(124,184)(125,183)(126,191)(127,190)(128,189)
(129,179)(130,178)(131,177)(132,176)(133,175)(134,174)(135,182)(136,181)
(137,180)(138,195)(139,197)(140,196)(141,192)(142,194)(143,193)(144,198)
(145,200)(146,199)(147,215)(148,214)(149,213)(150,212)(151,211)(152,210)
(153,218)(154,217)(155,216)(156,206)(157,205)(158,204)(159,203)(160,202)
(161,201)(162,209)(163,208)(164,207);
s3 := Sym(218)!( 3,120)( 4,122)( 5,121)( 6,123)( 7,125)( 8,124)( 9,126)
( 10,128)( 11,127)( 12,111)( 13,113)( 14,112)( 15,114)( 16,116)( 17,115)
( 18,117)( 19,119)( 20,118)( 21,131)( 22,130)( 23,129)( 24,134)( 25,133)
( 26,132)( 27,137)( 28,136)( 29,135)( 30,147)( 31,149)( 32,148)( 33,150)
( 34,152)( 35,151)( 36,153)( 37,155)( 38,154)( 39,138)( 40,140)( 41,139)
( 42,141)( 43,143)( 44,142)( 45,144)( 46,146)( 47,145)( 48,158)( 49,157)
( 50,156)( 51,161)( 52,160)( 53,159)( 54,164)( 55,163)( 56,162)( 57,201)
( 58,203)( 59,202)( 60,204)( 61,206)( 62,205)( 63,207)( 64,209)( 65,208)
( 66,192)( 67,194)( 68,193)( 69,195)( 70,197)( 71,196)( 72,198)( 73,200)
( 74,199)( 75,212)( 76,211)( 77,210)( 78,215)( 79,214)( 80,213)( 81,218)
( 82,217)( 83,216)( 84,174)( 85,176)( 86,175)( 87,177)( 88,179)( 89,178)
( 90,180)( 91,182)( 92,181)( 93,165)( 94,167)( 95,166)( 96,168)( 97,170)
( 98,169)( 99,171)(100,173)(101,172)(102,185)(103,184)(104,183)(105,188)
(106,187)(107,186)(108,191)(109,190)(110,189);
poly := sub<Sym(218)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope