Polytope of Type {6,18,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18,8}*1728b
if this polytope has a name.
Group : SmallGroup(1728,15957)
Rank : 4
Schlafli Type : {6,18,8}
Number of vertices, edges, etc : 6, 54, 72, 8
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,18,4}*864b
   3-fold quotients : {2,18,8}*576, {6,6,8}*576b
   4-fold quotients : {6,18,2}*432b
   6-fold quotients : {2,18,4}*288a, {6,6,4}*288b
   8-fold quotients : {6,9,2}*216
   9-fold quotients : {2,6,8}*192
   12-fold quotients : {2,18,2}*144, {6,6,2}*144b
   18-fold quotients : {2,6,4}*96a
   24-fold quotients : {2,9,2}*72, {6,3,2}*72
   27-fold quotients : {2,2,8}*64
   36-fold quotients : {2,6,2}*48
   54-fold quotients : {2,2,4}*32
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)(121,124)
(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)(141,144)
(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)(167,170)
(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)(193,196)
(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)(213,216);;
s1 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 24)( 11, 23)( 12, 22)( 13, 21)
( 14, 20)( 15, 19)( 16, 27)( 17, 26)( 18, 25)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)( 43, 54)
( 44, 53)( 45, 52)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 78)( 65, 77)
( 66, 76)( 67, 75)( 68, 74)( 69, 73)( 70, 81)( 71, 80)( 72, 79)( 82, 85)
( 83, 87)( 84, 86)( 89, 90)( 91,105)( 92,104)( 93,103)( 94,102)( 95,101)
( 96,100)( 97,108)( 98,107)( 99,106)(109,112)(110,114)(111,113)(116,117)
(118,132)(119,131)(120,130)(121,129)(122,128)(123,127)(124,135)(125,134)
(126,133)(136,139)(137,141)(138,140)(143,144)(145,159)(146,158)(147,157)
(148,156)(149,155)(150,154)(151,162)(152,161)(153,160)(163,166)(164,168)
(165,167)(170,171)(172,186)(173,185)(174,184)(175,183)(176,182)(177,181)
(178,189)(179,188)(180,187)(190,193)(191,195)(192,194)(197,198)(199,213)
(200,212)(201,211)(202,210)(203,209)(204,208)(205,216)(206,215)(207,214);;
s2 := (  1, 10)(  2, 12)(  3, 11)(  4, 16)(  5, 18)(  6, 17)(  7, 13)(  8, 15)
(  9, 14)( 19, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 37)( 29, 39)( 30, 38)
( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 46, 48)( 49, 54)
( 50, 53)( 51, 52)( 55, 91)( 56, 93)( 57, 92)( 58, 97)( 59, 99)( 60, 98)
( 61, 94)( 62, 96)( 63, 95)( 64, 82)( 65, 84)( 66, 83)( 67, 88)( 68, 90)
( 69, 89)( 70, 85)( 71, 87)( 72, 86)( 73,102)( 74,101)( 75,100)( 76,108)
( 77,107)( 78,106)( 79,105)( 80,104)( 81,103)(109,172)(110,174)(111,173)
(112,178)(113,180)(114,179)(115,175)(116,177)(117,176)(118,163)(119,165)
(120,164)(121,169)(122,171)(123,170)(124,166)(125,168)(126,167)(127,183)
(128,182)(129,181)(130,189)(131,188)(132,187)(133,186)(134,185)(135,184)
(136,199)(137,201)(138,200)(139,205)(140,207)(141,206)(142,202)(143,204)
(144,203)(145,190)(146,192)(147,191)(148,196)(149,198)(150,197)(151,193)
(152,195)(153,194)(154,210)(155,209)(156,208)(157,216)(158,215)(159,214)
(160,213)(161,212)(162,211);;
s3 := (  1,109)(  2,110)(  3,111)(  4,112)(  5,113)(  6,114)(  7,115)(  8,116)
(  9,117)( 10,118)( 11,119)( 12,120)( 13,121)( 14,122)( 15,123)( 16,124)
( 17,125)( 18,126)( 19,127)( 20,128)( 21,129)( 22,130)( 23,131)( 24,132)
( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)
( 33,141)( 34,142)( 35,143)( 36,144)( 37,145)( 38,146)( 39,147)( 40,148)
( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,154)( 47,155)( 48,156)
( 49,157)( 50,158)( 51,159)( 52,160)( 53,161)( 54,162)( 55,190)( 56,191)
( 57,192)( 58,193)( 59,194)( 60,195)( 61,196)( 62,197)( 63,198)( 64,199)
( 65,200)( 66,201)( 67,202)( 68,203)( 69,204)( 70,205)( 71,206)( 72,207)
( 73,208)( 74,209)( 75,210)( 76,211)( 77,212)( 78,213)( 79,214)( 80,215)
( 81,216)( 82,163)( 83,164)( 84,165)( 85,166)( 86,167)( 87,168)( 88,169)
( 89,170)( 90,171)( 91,172)( 92,173)( 93,174)( 94,175)( 95,176)( 96,177)
( 97,178)( 98,179)( 99,180)(100,181)(101,182)(102,183)(103,184)(104,185)
(105,186)(106,187)(107,188)(108,189);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)
(121,124)(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)
(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)
(167,170)(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)
(193,196)(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)
(213,216);
s1 := Sym(216)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 24)( 11, 23)( 12, 22)
( 13, 21)( 14, 20)( 15, 19)( 16, 27)( 17, 26)( 18, 25)( 28, 31)( 29, 33)
( 30, 32)( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)
( 43, 54)( 44, 53)( 45, 52)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 78)
( 65, 77)( 66, 76)( 67, 75)( 68, 74)( 69, 73)( 70, 81)( 71, 80)( 72, 79)
( 82, 85)( 83, 87)( 84, 86)( 89, 90)( 91,105)( 92,104)( 93,103)( 94,102)
( 95,101)( 96,100)( 97,108)( 98,107)( 99,106)(109,112)(110,114)(111,113)
(116,117)(118,132)(119,131)(120,130)(121,129)(122,128)(123,127)(124,135)
(125,134)(126,133)(136,139)(137,141)(138,140)(143,144)(145,159)(146,158)
(147,157)(148,156)(149,155)(150,154)(151,162)(152,161)(153,160)(163,166)
(164,168)(165,167)(170,171)(172,186)(173,185)(174,184)(175,183)(176,182)
(177,181)(178,189)(179,188)(180,187)(190,193)(191,195)(192,194)(197,198)
(199,213)(200,212)(201,211)(202,210)(203,209)(204,208)(205,216)(206,215)
(207,214);
s2 := Sym(216)!(  1, 10)(  2, 12)(  3, 11)(  4, 16)(  5, 18)(  6, 17)(  7, 13)
(  8, 15)(  9, 14)( 19, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 37)( 29, 39)
( 30, 38)( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 46, 48)
( 49, 54)( 50, 53)( 51, 52)( 55, 91)( 56, 93)( 57, 92)( 58, 97)( 59, 99)
( 60, 98)( 61, 94)( 62, 96)( 63, 95)( 64, 82)( 65, 84)( 66, 83)( 67, 88)
( 68, 90)( 69, 89)( 70, 85)( 71, 87)( 72, 86)( 73,102)( 74,101)( 75,100)
( 76,108)( 77,107)( 78,106)( 79,105)( 80,104)( 81,103)(109,172)(110,174)
(111,173)(112,178)(113,180)(114,179)(115,175)(116,177)(117,176)(118,163)
(119,165)(120,164)(121,169)(122,171)(123,170)(124,166)(125,168)(126,167)
(127,183)(128,182)(129,181)(130,189)(131,188)(132,187)(133,186)(134,185)
(135,184)(136,199)(137,201)(138,200)(139,205)(140,207)(141,206)(142,202)
(143,204)(144,203)(145,190)(146,192)(147,191)(148,196)(149,198)(150,197)
(151,193)(152,195)(153,194)(154,210)(155,209)(156,208)(157,216)(158,215)
(159,214)(160,213)(161,212)(162,211);
s3 := Sym(216)!(  1,109)(  2,110)(  3,111)(  4,112)(  5,113)(  6,114)(  7,115)
(  8,116)(  9,117)( 10,118)( 11,119)( 12,120)( 13,121)( 14,122)( 15,123)
( 16,124)( 17,125)( 18,126)( 19,127)( 20,128)( 21,129)( 22,130)( 23,131)
( 24,132)( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)
( 32,140)( 33,141)( 34,142)( 35,143)( 36,144)( 37,145)( 38,146)( 39,147)
( 40,148)( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,154)( 47,155)
( 48,156)( 49,157)( 50,158)( 51,159)( 52,160)( 53,161)( 54,162)( 55,190)
( 56,191)( 57,192)( 58,193)( 59,194)( 60,195)( 61,196)( 62,197)( 63,198)
( 64,199)( 65,200)( 66,201)( 67,202)( 68,203)( 69,204)( 70,205)( 71,206)
( 72,207)( 73,208)( 74,209)( 75,210)( 76,211)( 77,212)( 78,213)( 79,214)
( 80,215)( 81,216)( 82,163)( 83,164)( 84,165)( 85,166)( 86,167)( 87,168)
( 88,169)( 89,170)( 90,171)( 91,172)( 92,173)( 93,174)( 94,175)( 95,176)
( 96,177)( 97,178)( 98,179)( 99,180)(100,181)(101,182)(102,183)(103,184)
(104,185)(105,186)(106,187)(107,188)(108,189);
poly := sub<Sym(216)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope