Polytope of Type {6,6,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,8}*576b
if this polytope has a name.
Group : SmallGroup(576,6606)
Rank : 4
Schlafli Type : {6,6,8}
Number of vertices, edges, etc : 6, 18, 24, 8
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,6,8,2} of size 1152
Vertex Figure Of :
   {2,6,6,8} of size 1152
   {3,6,6,8} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,4}*288b
   3-fold quotients : {2,6,8}*192
   4-fold quotients : {6,6,2}*144b
   6-fold quotients : {2,6,4}*96a
   8-fold quotients : {6,3,2}*72
   9-fold quotients : {2,2,8}*64
   12-fold quotients : {2,6,2}*48
   18-fold quotients : {2,2,4}*32
   24-fold quotients : {2,3,2}*24
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,12,8}*1152a, {12,6,8}*1152a, {6,6,16}*1152a
   3-fold covers : {6,18,8}*1728b, {6,6,8}*1728a, {6,6,24}*1728d, {6,6,8}*1728e, {6,6,24}*1728g
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,31)(20,33)
(21,32)(22,28)(23,30)(24,29)(25,34)(26,36)(27,35)(37,58)(38,60)(39,59)(40,55)
(41,57)(42,56)(43,61)(44,63)(45,62)(46,67)(47,69)(48,68)(49,64)(50,66)(51,65)
(52,70)(53,72)(54,71);;
s3 := ( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)
(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)(21,66)
(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)
(33,60)(34,61)(35,62)(36,63);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(72)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72);
s1 := Sym(72)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);
s2 := Sym(72)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,31)
(20,33)(21,32)(22,28)(23,30)(24,29)(25,34)(26,36)(27,35)(37,58)(38,60)(39,59)
(40,55)(41,57)(42,56)(43,61)(44,63)(45,62)(46,67)(47,69)(48,68)(49,64)(50,66)
(51,65)(52,70)(53,72)(54,71);
s3 := Sym(72)!( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)
(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)
(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)
(32,59)(33,60)(34,61)(35,62)(36,63);
poly := sub<Sym(72)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope