include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {36,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,12,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,16615)
Rank : 4
Schlafli Type : {36,12,2}
Number of vertices, edges, etc : 36, 216, 12, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {36,6,2}*864b, {18,12,2}*864b
3-fold quotients : {36,4,2}*576a, {12,12,2}*576c
4-fold quotients : {18,6,2}*432b
6-fold quotients : {36,2,2}*288, {18,4,2}*288a, {12,6,2}*288b, {6,12,2}*288c
8-fold quotients : {9,6,2}*216
9-fold quotients : {12,4,2}*192a
12-fold quotients : {18,2,2}*144, {6,6,2}*144c
18-fold quotients : {12,2,2}*96, {6,4,2}*96a
24-fold quotients : {9,2,2}*72, {3,6,2}*72
27-fold quotients : {4,4,2}*64
36-fold quotients : {6,2,2}*48
54-fold quotients : {2,4,2}*32, {4,2,2}*32
72-fold quotients : {3,2,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 21)( 11, 20)( 12, 19)( 13, 27)
( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)( 43, 51)
( 44, 50)( 45, 49)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 75)( 65, 74)
( 66, 73)( 67, 81)( 68, 80)( 69, 79)( 70, 78)( 71, 77)( 72, 76)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)( 94,108)( 95,107)
( 96,106)( 97,105)( 98,104)( 99,103)(109,190)(110,192)(111,191)(112,196)
(113,198)(114,197)(115,193)(116,195)(117,194)(118,210)(119,209)(120,208)
(121,216)(122,215)(123,214)(124,213)(125,212)(126,211)(127,201)(128,200)
(129,199)(130,207)(131,206)(132,205)(133,204)(134,203)(135,202)(136,163)
(137,165)(138,164)(139,169)(140,171)(141,170)(142,166)(143,168)(144,167)
(145,183)(146,182)(147,181)(148,189)(149,188)(150,187)(151,186)(152,185)
(153,184)(154,174)(155,173)(156,172)(157,180)(158,179)(159,178)(160,177)
(161,176)(162,175);;
s1 := ( 1,121)( 2,123)( 3,122)( 4,118)( 5,120)( 6,119)( 7,124)( 8,126)
( 9,125)( 10,112)( 11,114)( 12,113)( 13,109)( 14,111)( 15,110)( 16,115)
( 17,117)( 18,116)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)( 24,127)
( 25,135)( 26,134)( 27,133)( 28,148)( 29,150)( 30,149)( 31,145)( 32,147)
( 33,146)( 34,151)( 35,153)( 36,152)( 37,139)( 38,141)( 39,140)( 40,136)
( 41,138)( 42,137)( 43,142)( 44,144)( 45,143)( 46,159)( 47,158)( 48,157)
( 49,156)( 50,155)( 51,154)( 52,162)( 53,161)( 54,160)( 55,175)( 56,177)
( 57,176)( 58,172)( 59,174)( 60,173)( 61,178)( 62,180)( 63,179)( 64,166)
( 65,168)( 66,167)( 67,163)( 68,165)( 69,164)( 70,169)( 71,171)( 72,170)
( 73,186)( 74,185)( 75,184)( 76,183)( 77,182)( 78,181)( 79,189)( 80,188)
( 81,187)( 82,202)( 83,204)( 84,203)( 85,199)( 86,201)( 87,200)( 88,205)
( 89,207)( 90,206)( 91,193)( 92,195)( 93,194)( 94,190)( 95,192)( 96,191)
( 97,196)( 98,198)( 99,197)(100,213)(101,212)(102,211)(103,210)(104,209)
(105,208)(106,216)(107,215)(108,214);;
s2 := ( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)(112,142)
(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)(120,147)
(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)(128,155)
(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)(163,190)
(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)(171,195)
(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)(179,203)
(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)(187,211)
(188,212)(189,213);;
s3 := (217,218);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 21)( 11, 20)( 12, 19)
( 13, 27)( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)
( 43, 51)( 44, 50)( 45, 49)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 75)
( 65, 74)( 66, 73)( 67, 81)( 68, 80)( 69, 79)( 70, 78)( 71, 77)( 72, 76)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)( 94,108)
( 95,107)( 96,106)( 97,105)( 98,104)( 99,103)(109,190)(110,192)(111,191)
(112,196)(113,198)(114,197)(115,193)(116,195)(117,194)(118,210)(119,209)
(120,208)(121,216)(122,215)(123,214)(124,213)(125,212)(126,211)(127,201)
(128,200)(129,199)(130,207)(131,206)(132,205)(133,204)(134,203)(135,202)
(136,163)(137,165)(138,164)(139,169)(140,171)(141,170)(142,166)(143,168)
(144,167)(145,183)(146,182)(147,181)(148,189)(149,188)(150,187)(151,186)
(152,185)(153,184)(154,174)(155,173)(156,172)(157,180)(158,179)(159,178)
(160,177)(161,176)(162,175);
s1 := Sym(218)!( 1,121)( 2,123)( 3,122)( 4,118)( 5,120)( 6,119)( 7,124)
( 8,126)( 9,125)( 10,112)( 11,114)( 12,113)( 13,109)( 14,111)( 15,110)
( 16,115)( 17,117)( 18,116)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)
( 24,127)( 25,135)( 26,134)( 27,133)( 28,148)( 29,150)( 30,149)( 31,145)
( 32,147)( 33,146)( 34,151)( 35,153)( 36,152)( 37,139)( 38,141)( 39,140)
( 40,136)( 41,138)( 42,137)( 43,142)( 44,144)( 45,143)( 46,159)( 47,158)
( 48,157)( 49,156)( 50,155)( 51,154)( 52,162)( 53,161)( 54,160)( 55,175)
( 56,177)( 57,176)( 58,172)( 59,174)( 60,173)( 61,178)( 62,180)( 63,179)
( 64,166)( 65,168)( 66,167)( 67,163)( 68,165)( 69,164)( 70,169)( 71,171)
( 72,170)( 73,186)( 74,185)( 75,184)( 76,183)( 77,182)( 78,181)( 79,189)
( 80,188)( 81,187)( 82,202)( 83,204)( 84,203)( 85,199)( 86,201)( 87,200)
( 88,205)( 89,207)( 90,206)( 91,193)( 92,195)( 93,194)( 94,190)( 95,192)
( 96,191)( 97,196)( 98,198)( 99,197)(100,213)(101,212)(102,211)(103,210)
(104,209)(105,208)(106,216)(107,215)(108,214);
s2 := Sym(218)!( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)
(112,142)(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)
(120,147)(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)
(128,155)(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)
(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)
(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)
(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)
(187,211)(188,212)(189,213);
s3 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope