Polytope of Type {18,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,12,2}*864b
if this polytope has a name.
Group : SmallGroup(864,2501)
Rank : 4
Schlafli Type : {18,12,2}
Number of vertices, edges, etc : 18, 108, 12, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {18,12,2,2} of size 1728
Vertex Figure Of :
   {2,18,12,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,6,2}*432b
   3-fold quotients : {18,4,2}*288a, {6,12,2}*288c
   4-fold quotients : {9,6,2}*216
   6-fold quotients : {18,2,2}*144, {6,6,2}*144c
   9-fold quotients : {6,4,2}*96a
   12-fold quotients : {9,2,2}*72, {3,6,2}*72
   18-fold quotients : {6,2,2}*48
   27-fold quotients : {2,4,2}*32
   36-fold quotients : {3,2,2}*24
   54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {36,12,2}*1728b, {18,24,2}*1728b, {18,12,4}*1728b
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 20)( 11, 19)( 12, 21)( 13, 26)
( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 74)( 65, 73)
( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 91,101)( 92,100)( 93,102)( 94,107)( 95,106)
( 96,108)( 97,104)( 98,103)( 99,105);;
s1 := (  1, 67)(  2, 69)(  3, 68)(  4, 64)(  5, 66)(  6, 65)(  7, 70)(  8, 72)
(  9, 71)( 10, 58)( 11, 60)( 12, 59)( 13, 55)( 14, 57)( 15, 56)( 16, 61)
( 17, 63)( 18, 62)( 19, 77)( 20, 76)( 21, 78)( 22, 74)( 23, 73)( 24, 75)
( 25, 80)( 26, 79)( 27, 81)( 28, 94)( 29, 96)( 30, 95)( 31, 91)( 32, 93)
( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37, 85)( 38, 87)( 39, 86)( 40, 82)
( 41, 84)( 42, 83)( 43, 88)( 44, 90)( 45, 89)( 46,104)( 47,103)( 48,105)
( 49,101)( 50,100)( 51,102)( 52,107)( 53,106)( 54,108);;
s2 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)
( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)( 68, 98)
( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)( 76,106)
( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);;
s3 := (109,110);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 20)( 11, 19)( 12, 21)
( 13, 26)( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)
( 43, 50)( 44, 49)( 45, 51)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 74)
( 65, 73)( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,101)( 92,100)( 93,102)( 94,107)
( 95,106)( 96,108)( 97,104)( 98,103)( 99,105);
s1 := Sym(110)!(  1, 67)(  2, 69)(  3, 68)(  4, 64)(  5, 66)(  6, 65)(  7, 70)
(  8, 72)(  9, 71)( 10, 58)( 11, 60)( 12, 59)( 13, 55)( 14, 57)( 15, 56)
( 16, 61)( 17, 63)( 18, 62)( 19, 77)( 20, 76)( 21, 78)( 22, 74)( 23, 73)
( 24, 75)( 25, 80)( 26, 79)( 27, 81)( 28, 94)( 29, 96)( 30, 95)( 31, 91)
( 32, 93)( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37, 85)( 38, 87)( 39, 86)
( 40, 82)( 41, 84)( 42, 83)( 43, 88)( 44, 90)( 45, 89)( 46,104)( 47,103)
( 48,105)( 49,101)( 50,100)( 51,102)( 52,107)( 53,106)( 54,108);
s2 := Sym(110)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)
( 60, 90)( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)
( 68, 98)( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)
( 76,106)( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);
s3 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope