include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,4,4}*1728
if this polytope has a name.
Group : SmallGroup(1728,17334)
Rank : 5
Schlafli Type : {9,6,4,4}
Number of vertices, edges, etc : 9, 27, 12, 8, 4
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,6,2,4}*864, {9,6,4,2}*864
3-fold quotients : {9,2,4,4}*576, {3,6,4,4}*576
4-fold quotients : {9,6,2,2}*432
6-fold quotients : {9,2,2,4}*288, {9,2,4,2}*288, {3,6,2,4}*288, {3,6,4,2}*288
9-fold quotients : {3,2,4,4}*192
12-fold quotients : {9,2,2,2}*144, {3,6,2,2}*144
18-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 21)( 11, 20)( 12, 19)( 13, 27)
( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)( 43, 51)
( 44, 50)( 45, 49)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 75)( 65, 74)
( 66, 73)( 67, 81)( 68, 80)( 69, 79)( 70, 78)( 71, 77)( 72, 76)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)( 94,108)( 95,107)
( 96,106)( 97,105)( 98,104)( 99,103)(110,111)(112,115)(113,117)(114,116)
(118,129)(119,128)(120,127)(121,135)(122,134)(123,133)(124,132)(125,131)
(126,130)(137,138)(139,142)(140,144)(141,143)(145,156)(146,155)(147,154)
(148,162)(149,161)(150,160)(151,159)(152,158)(153,157)(164,165)(166,169)
(167,171)(168,170)(172,183)(173,182)(174,181)(175,189)(176,188)(177,187)
(178,186)(179,185)(180,184)(191,192)(193,196)(194,198)(195,197)(199,210)
(200,209)(201,208)(202,216)(203,215)(204,214)(205,213)(206,212)(207,211);;
s1 := ( 1, 13)( 2, 15)( 3, 14)( 4, 10)( 5, 12)( 6, 11)( 7, 16)( 8, 18)
( 9, 17)( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 40)( 29, 42)( 30, 41)
( 31, 37)( 32, 39)( 33, 38)( 34, 43)( 35, 45)( 36, 44)( 46, 51)( 47, 50)
( 48, 49)( 52, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73, 78)( 74, 77)( 75, 76)( 79, 81)( 82, 94)
( 83, 96)( 84, 95)( 85, 91)( 86, 93)( 87, 92)( 88, 97)( 89, 99)( 90, 98)
(100,105)(101,104)(102,103)(106,108)(109,121)(110,123)(111,122)(112,118)
(113,120)(114,119)(115,124)(116,126)(117,125)(127,132)(128,131)(129,130)
(133,135)(136,148)(137,150)(138,149)(139,145)(140,147)(141,146)(142,151)
(143,153)(144,152)(154,159)(155,158)(156,157)(160,162)(163,175)(164,177)
(165,176)(166,172)(167,174)(168,173)(169,178)(170,180)(171,179)(181,186)
(182,185)(183,184)(187,189)(190,202)(191,204)(192,203)(193,199)(194,201)
(195,200)(196,205)(197,207)(198,206)(208,213)(209,212)(210,211)(214,216);;
s2 := ( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)(112,142)
(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)(120,147)
(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)(128,155)
(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)(163,190)
(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)(171,195)
(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)(179,203)
(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)(187,211)
(188,212)(189,213);;
s3 := ( 1,109)( 2,110)( 3,111)( 4,112)( 5,113)( 6,114)( 7,115)( 8,116)
( 9,117)( 10,118)( 11,119)( 12,120)( 13,121)( 14,122)( 15,123)( 16,124)
( 17,125)( 18,126)( 19,127)( 20,128)( 21,129)( 22,130)( 23,131)( 24,132)
( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)
( 33,141)( 34,142)( 35,143)( 36,144)( 37,145)( 38,146)( 39,147)( 40,148)
( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,154)( 47,155)( 48,156)
( 49,157)( 50,158)( 51,159)( 52,160)( 53,161)( 54,162)( 55,163)( 56,164)
( 57,165)( 58,166)( 59,167)( 60,168)( 61,169)( 62,170)( 63,171)( 64,172)
( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)( 72,180)
( 73,181)( 74,182)( 75,183)( 76,184)( 77,185)( 78,186)( 79,187)( 80,188)
( 81,189)( 82,190)( 83,191)( 84,192)( 85,193)( 86,194)( 87,195)( 88,196)
( 89,197)( 90,198)( 91,199)( 92,200)( 93,201)( 94,202)( 95,203)( 96,204)
( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)(104,212)
(105,213)(106,214)(107,215)(108,216);;
s4 := (109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,169)(116,170)
(117,171)(118,172)(119,173)(120,174)(121,175)(122,176)(123,177)(124,178)
(125,179)(126,180)(127,181)(128,182)(129,183)(130,184)(131,185)(132,186)
(133,187)(134,188)(135,189)(136,190)(137,191)(138,192)(139,193)(140,194)
(141,195)(142,196)(143,197)(144,198)(145,199)(146,200)(147,201)(148,202)
(149,203)(150,204)(151,205)(152,206)(153,207)(154,208)(155,209)(156,210)
(157,211)(158,212)(159,213)(160,214)(161,215)(162,216);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 21)( 11, 20)( 12, 19)
( 13, 27)( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)
( 43, 51)( 44, 50)( 45, 49)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 75)
( 65, 74)( 66, 73)( 67, 81)( 68, 80)( 69, 79)( 70, 78)( 71, 77)( 72, 76)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)( 94,108)
( 95,107)( 96,106)( 97,105)( 98,104)( 99,103)(110,111)(112,115)(113,117)
(114,116)(118,129)(119,128)(120,127)(121,135)(122,134)(123,133)(124,132)
(125,131)(126,130)(137,138)(139,142)(140,144)(141,143)(145,156)(146,155)
(147,154)(148,162)(149,161)(150,160)(151,159)(152,158)(153,157)(164,165)
(166,169)(167,171)(168,170)(172,183)(173,182)(174,181)(175,189)(176,188)
(177,187)(178,186)(179,185)(180,184)(191,192)(193,196)(194,198)(195,197)
(199,210)(200,209)(201,208)(202,216)(203,215)(204,214)(205,213)(206,212)
(207,211);
s1 := Sym(216)!( 1, 13)( 2, 15)( 3, 14)( 4, 10)( 5, 12)( 6, 11)( 7, 16)
( 8, 18)( 9, 17)( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 40)( 29, 42)
( 30, 41)( 31, 37)( 32, 39)( 33, 38)( 34, 43)( 35, 45)( 36, 44)( 46, 51)
( 47, 50)( 48, 49)( 52, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)
( 60, 65)( 61, 70)( 62, 72)( 63, 71)( 73, 78)( 74, 77)( 75, 76)( 79, 81)
( 82, 94)( 83, 96)( 84, 95)( 85, 91)( 86, 93)( 87, 92)( 88, 97)( 89, 99)
( 90, 98)(100,105)(101,104)(102,103)(106,108)(109,121)(110,123)(111,122)
(112,118)(113,120)(114,119)(115,124)(116,126)(117,125)(127,132)(128,131)
(129,130)(133,135)(136,148)(137,150)(138,149)(139,145)(140,147)(141,146)
(142,151)(143,153)(144,152)(154,159)(155,158)(156,157)(160,162)(163,175)
(164,177)(165,176)(166,172)(167,174)(168,173)(169,178)(170,180)(171,179)
(181,186)(182,185)(183,184)(187,189)(190,202)(191,204)(192,203)(193,199)
(194,201)(195,200)(196,205)(197,207)(198,206)(208,213)(209,212)(210,211)
(214,216);
s2 := Sym(216)!( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)
(112,142)(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)
(120,147)(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)
(128,155)(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)
(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)
(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)
(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)
(187,211)(188,212)(189,213);
s3 := Sym(216)!( 1,109)( 2,110)( 3,111)( 4,112)( 5,113)( 6,114)( 7,115)
( 8,116)( 9,117)( 10,118)( 11,119)( 12,120)( 13,121)( 14,122)( 15,123)
( 16,124)( 17,125)( 18,126)( 19,127)( 20,128)( 21,129)( 22,130)( 23,131)
( 24,132)( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)
( 32,140)( 33,141)( 34,142)( 35,143)( 36,144)( 37,145)( 38,146)( 39,147)
( 40,148)( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,154)( 47,155)
( 48,156)( 49,157)( 50,158)( 51,159)( 52,160)( 53,161)( 54,162)( 55,163)
( 56,164)( 57,165)( 58,166)( 59,167)( 60,168)( 61,169)( 62,170)( 63,171)
( 64,172)( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)
( 72,180)( 73,181)( 74,182)( 75,183)( 76,184)( 77,185)( 78,186)( 79,187)
( 80,188)( 81,189)( 82,190)( 83,191)( 84,192)( 85,193)( 86,194)( 87,195)
( 88,196)( 89,197)( 90,198)( 91,199)( 92,200)( 93,201)( 94,202)( 95,203)
( 96,204)( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)
(104,212)(105,213)(106,214)(107,215)(108,216);
s4 := Sym(216)!(109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,169)
(116,170)(117,171)(118,172)(119,173)(120,174)(121,175)(122,176)(123,177)
(124,178)(125,179)(126,180)(127,181)(128,182)(129,183)(130,184)(131,185)
(132,186)(133,187)(134,188)(135,189)(136,190)(137,191)(138,192)(139,193)
(140,194)(141,195)(142,196)(143,197)(144,198)(145,199)(146,200)(147,201)
(148,202)(149,203)(150,204)(151,205)(152,206)(153,207)(154,208)(155,209)
(156,210)(157,211)(158,212)(159,213)(160,214)(161,215)(162,216);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope