Polytope of Type {9,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,4}*432
if this polytope has a name.
Group : SmallGroup(432,315)
Rank : 4
Schlafli Type : {9,6,4}
Number of vertices, edges, etc : 9, 27, 12, 4
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {9,6,4,2} of size 864
   {9,6,4,4} of size 1728
Vertex Figure Of :
   {2,9,6,4} of size 864
   {4,9,6,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,6,2}*216
   3-fold quotients : {9,2,4}*144, {3,6,4}*144
   6-fold quotients : {9,2,2}*72, {3,6,2}*72
   9-fold quotients : {3,2,4}*48
   18-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {9,6,8}*864, {18,6,4}*864b
   3-fold covers : {9,18,4}*1296, {9,6,4}*1296a, {27,6,4}*1296, {9,6,12}*1296b
   4-fold covers : {9,6,16}*1728, {36,6,4}*1728b, {18,6,8}*1728b, {18,12,4}*1728b, {9,6,4}*1728a, {9,12,4}*1728
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 20)( 11, 19)( 12, 21)( 13, 26)
( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 74)( 65, 73)
( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 91,101)( 92,100)( 93,102)( 94,107)( 95,106)
( 96,108)( 97,104)( 98,103)( 99,105);;
s1 := (  1, 13)(  2, 15)(  3, 14)(  4, 10)(  5, 12)(  6, 11)(  7, 16)(  8, 18)
(  9, 17)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 40)( 29, 42)( 30, 41)
( 31, 37)( 32, 39)( 33, 38)( 34, 43)( 35, 45)( 36, 44)( 46, 50)( 47, 49)
( 48, 51)( 52, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73, 77)( 74, 76)( 75, 78)( 79, 80)( 82, 94)
( 83, 96)( 84, 95)( 85, 91)( 86, 93)( 87, 92)( 88, 97)( 89, 99)( 90, 98)
(100,104)(101,103)(102,105)(106,107);;
s2 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)
( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)( 68, 98)
( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)( 76,106)
( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);;
s3 := (  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)
(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 20)( 11, 19)( 12, 21)
( 13, 26)( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)
( 43, 50)( 44, 49)( 45, 51)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 74)
( 65, 73)( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,101)( 92,100)( 93,102)( 94,107)
( 95,106)( 96,108)( 97,104)( 98,103)( 99,105);
s1 := Sym(108)!(  1, 13)(  2, 15)(  3, 14)(  4, 10)(  5, 12)(  6, 11)(  7, 16)
(  8, 18)(  9, 17)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 40)( 29, 42)
( 30, 41)( 31, 37)( 32, 39)( 33, 38)( 34, 43)( 35, 45)( 36, 44)( 46, 50)
( 47, 49)( 48, 51)( 52, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)
( 60, 65)( 61, 70)( 62, 72)( 63, 71)( 73, 77)( 74, 76)( 75, 78)( 79, 80)
( 82, 94)( 83, 96)( 84, 95)( 85, 91)( 86, 93)( 87, 92)( 88, 97)( 89, 99)
( 90, 98)(100,104)(101,103)(102,105)(106,107);
s2 := Sym(108)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)
( 60, 90)( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)
( 68, 98)( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)
( 76,106)( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);
s3 := Sym(108)!(  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)
(  8, 62)(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope